Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Nano Lett ; 24(22): 6585-6591, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785400

RESUMO

The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.

2.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847614

RESUMO

Axially chiral biaryls featuring a C-N axis are important functional molecules in diverse fields. The asymmetric Buchwald-Hartwig reaction represents a powerful strategy for these targets. Previous studies, however, have been predominantly restricted to intramolecular atroposelective coupling, likely due to the steric and entropic effects in the reductive elimination of Pd(II) species with sterically congested aryl and nitrogen groups. We now report two intermolecular Buchwald-Hartwig coupling systems of bulky NH lactams and halohydrocarbons enabled by rerouting the mechanism of C-N reductive elimination to one that accommodates sterically challenging substrates. Both atroposelective coupling systems exhibited functional group tolerance, excellent enantioselectivity, and high Z selectivity (if applicable), affording C-N atropisomeric biaryl and olefins through de novo construction of a C-N chiral axis. Experimental and computational studies were performed to elucidate the mechanism, and the switch of the reaction pathways is traced to the steric effect (ortho substituent) of the aryl halide substrate. A bulky 2,6-disubstituted aryl halide reorients the proximal lactamide ligand to its unusual O-ligation mode. With the amide oxygen participation, this intermediate undergoes C-N reductive elimination with an accessible barrier through a five-membered ring transition state, a pathway as well as a chiral induction mode that has been much underexplored in asymmetric catalysis.

3.
J Am Chem Soc ; 146(1): 250-262, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147793

RESUMO

We report the macrocyclic ring size-electronic structure-electrophilic reactivity correlation of mononuclear nonheme iron(III)-peroxo complexes bearing N-tetramethylated cyclam analogues (n-TMC), [FeIII(O2)(12-TMC)]+ (1), [FeIII(O2)(13-TMC)]+ (2), and [FeIII(O2)(14-TMC)]+ (3), as a model study of Rieske oxygenases. The Fe(III)-peroxo complexes show the same δ and pseudo-σ bonds between iron and the peroxo ligand. However, the strength of these interactions varies depending on the ring size of the n-TMC ligands; the overall Fe-O bond strength and the strength of the Fe-O2 δ bond increase gradually as the ring size of the n-TMC ligands becomes smaller, such as from 14-TMC to 13-TMC to 12-TMC. MCD spectroscopy plays a key role in assigning the characteristic low-energy δ → δ* LMCT band, which provides direct insight into the strength of the Fe-O2 δ bond and which, in turn, is correlated with the superoxo character of the iron-peroxo group. In oxidation reactions, reactivities of 1-3 toward hydrocarbon C-H bond activation are compared, revealing the reactivity order of 1 > 2 > 3; the [FeIII(O2)(n-TMC)]+ complex with a smaller n-TMC ring size, 12-TMC, is much more reactive than that with a larger n-TMC ring size, 14-TMC. DFT analysis shows that the Fe(III)-peroxo complex is not reactive toward C-H bonds, but it is the end-on Fe(II)-superoxo valence tautomer that is responsible for the observed reactivity. The hydrogen atom abstraction (HAA) reactivity of these intermediates is correlated with the overall donicity of the n-TMC ligand, which modulates the energy of the singly occupied π* superoxo frontier orbital that serves as the electron acceptor in the HAA reaction. The implications of these results for the mechanism of Rieske oxygenases are further discussed.


Assuntos
Ciclamos , Ferro , Ferro/química , Oxigenases , Ligantes , Biomimética , Oxigênio/química , Hidrogênio , Compostos Férricos
4.
Nanotechnology ; 35(19)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38316045

RESUMO

Molybdenum sulfide (MoS2) as an emerging optoelectronic material, shows great potential for phototransistors owing to its atomic thickness, adjustable band gap, and low cost. However, the phototransistors based on MoS2have been shown to have some issues such as large gate leakage current, and interfacial scattering, resulting in suboptimal optoelectronic performance. Thus, Al-doped hafnium oxide (Hf1-xAlx) is proposed to be a dielectric layer of the MoS2-based phototransistor to solve this problem because of the relatively higher crystallization temperature and dielectric constant. Here, a high-performance MoS2phototransistor with Hf1-xAlxO gate dielectric layer grown by plasma-enhanced atomic layer deposition has been fabricated and studied. The results show that the phototransistor exhibits a high responsivity of 2.2 × 104A W-1, a large detectivity of 1.7 × 1017Jones, a great photo-to-dark current ratio of 2.2 × 106%, and a high external quantum efficiency of 4.4 × 106%. The energy band alignment and operating mechanism were further used to clarify the reason for the enhanced MoS2phototransistor. The suggested MoS2phototransistors could provide promising strategies in further optoelectronic applications.

5.
Angew Chem Int Ed Engl ; 63(1): e202312923, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37971168

RESUMO

Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠ (rac)=26.6-28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C-H bond and the Rh-C(vinyl) bond, with subsequent C-C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.

6.
Angew Chem Int Ed Engl ; 63(1): e202315230, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37938113

RESUMO

The carbon-to-silicon switch in formation of bioactive sila-heterocycles with a silicon-stereogenic center has garnered significant interest in drug discovery. However, metal-catalyzed synthesis of such scaffolds is still in its infancy. Herein, a rhodium-catalyzed enantioselective formal [4+1] cyclization of benzyl alcohols and benzaldimines has been realized by enantioselective difunctionalization of a secondary silane reagent, affording chiral-at-silicon cyclic silyl ethers and sila-isoindolines, respectively. Mechanistic studies reveal a dual role of the rhodium-hydride catalyst. The coupling system proceeds via rhodium-catalyzed enantio-determining dehydrogenative OH silylation of the benzyl alcohol or hydrosilylation of the imine to give an enantioenriched silyl ether or silazane intermediate, respectively. The same rhodium catalyst also enables subsequent intramolecular cyclative C-H silylation directed by the pendent Si-H group. Experimental and DFT studies have been conducted to explore the mechanism of the OH bond silylation of benzyl alcohol, where the Si-O reductive elimination from a Rh(III) hydride intermediate has been established as the enantiodetermining step.

7.
J Am Chem Soc ; 145(8): 4389-4393, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795537

RESUMO

The nature of reactive intermediates and the mechanism of the cis-dihydroxylation of arenes and olefins by Rieske dioxygenases and synthetic nonheme iron catalysts have been the topic of intense research over the past several decades. In this study, we report that a spectroscopically well characterized mononuclear nonheme iron(III)-peroxo complex reacts with olefins and naphthalene derivatives, yielding iron(III) cycloadducts that are isolated and characterized structurally and spectroscopically. Kinetics and product analysis reveal that the nonheme iron(III)-peroxo complex is a nucleophile that reacts with olefins and naphthalenes to yield cis-diol products. The present study reports the first example of the cis-dihydroxylation of substrates by a nonheme iron(III)-peroxo complex that yields cis-diol products.


Assuntos
Dioxigenases , Ferro/química , Catálise , Alcenos/química
8.
Cancer Cell Int ; 23(1): 151, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37525152

RESUMO

BACKGROUND: Exosome, a component of liquid biopsy, loaded protein, DNA, RNA and lipid gradually emerges as biomarker in tumors. However, exosomal circRNAs as biomarker and function mechanism in gastric cancer (GC) are not well understood. METHODS: Differentially expressed circRNAs in GC and healthy people were screened by database. The identification of hsa_circ_000200 was verified by RNase R and sequencing, and the expression of hsa_circ_000200 was evaluated using qRT-PCR. The biological function of hsa_circ_000200 in GC was verified in vitro. Western blot, RIP, RNA fluorescence in situ hybridization, and double luciferase assay were utilized to explore the potential mechanism of hsa_circ_000200. RESULTS: Hsa_circ_000200 up-regulated in GC tissue, serum and serum exosomes. Hsa_circ_000200 in serum exosomes showed better diagnostic ability than that of tissues and serum. Combined with clinicopathological parameters, its level was related to invasion depth, TNM staging, and distal metastasis. Functionally, knockdown of hsa_circ_000200 inhibited GC cells proliferation, migration and invasion in vitro, while its overexpression played the opposite role. Importantly, exosomes with up-regulated hsa_circ_000200 promoted the proliferation and migration of co-cultured GC cells. Mechanistically, hsa_circ_000200 acted as a "ceRNA" for miR-4659a/b-3p to increase HBEGF and TGF-ß/Smad expression, then promoted the development of GC. CONCLUSIONS: Our findings suggest that hsa_circ_000200 promotes the progression of GC through hsa_circ_000200/miR-4659a/b-3p/HBEGF axis and affecting the expression of TGF-ß/Smad. Serum exosomal hsa_circ_000200 may serve as a potential biomarker for GC.

9.
Angew Chem Int Ed Engl ; 62(37): e202305669, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37357836

RESUMO

The incorporation of fluorine atoms in organics improves their bioactivity and lipophilicity. Catalytic functionalization of gem-difluorodienes represents one of the most straightforward approaches to access fluorinated alkenes. In contrast to the regular 1,3-dienes that undergo diverse asymmetric di/hydrofunctionalizations, the regio- and enantioselective oxyamination of gem-difluorodienes remains untouched. Herein, we report asymmetric 1,4-oxyamination of gem-difluorodiene by chiral rhodium-catalyzed three-component coupling with readily available carboxylic acid and dioxazolone, affording gem-difluorinated 1,4-amino alcohol derivatives. Our asymmetric protocol exhibits high 1,4-regio- and enantioselectivity with utility in the late-stage modification of pharmaceuticals and natural products. Stoichiometric experiments provide evidences for the π-allylrhodium pathway. Related oxyamination was also realized when trifluoroethanol was used as an oxygen nucleophile.

10.
Chem Biodivers ; 19(7): e202200218, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35689671

RESUMO

Three new alkamides, achilleamide B-D (1-3) along with five known alkamides (4-8) were isolated from the aerial parts of Achillea alpina L. Structures were elucidated by spectroscopic analysis. Modified Mosher's method and electronic circular dichroism (ECD) calculations were introduced for the absolute configuration of 3. The neuroprotective effects of all the compounds were evaluated by 6-hydroxydopamine (6-OHDA)-induced cell death in human neuroblastoma SH-SY5Y cells, with concentration for 50 % of maximal effect (EC50 ) values of 3.16-24.75 µM, and the structure-activity relationship was conducted.


Assuntos
Achillea , Neuroblastoma , Fármacos Neuroprotetores , Achillea/química , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Componentes Aéreos da Planta/química
11.
J Am Chem Soc ; 143(38): 15556-15561, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529428

RESUMO

A mononuclear non-heme iron(III)-peroxo complex, [Fe(III)(O2)(13-TMC)]+ (1), was synthesized and characterized spectroscopically; the characterization with electron paramagnetic resonance, Mössbauer, X-ray absorption, and resonance Raman spectroscopies and mass spectrometry supported a high-spin S = 5/2 Fe(III) species binding an O2 unit. A notable observation was an unusually high νO-O at ∼1000 cm-1 for the peroxo ligand. With regard to reactivity, 1 showed electrophilic reactivity in H atom abstraction (HAA) and O atom transfer (OAT) reactions. In the HAT reaction, a kinetic isotope effect (KIE) value of 5.8 was obtained in the oxidation of 9,10-dihydroanthracene. In the OAT reaction, a negative ρ value of -0.61 in the Hammett plot was determined in the oxidation of p-X-substituted thioanisoles. Another interesting observation was the electrophilic reactivity of 1 in the oxidation of benzaldehyde derivatives, such as a negative ρ value of -0.77 in the Hammett plot and a KIE value of 2.2. To the best of our knowledge, the present study reports the first example of a mononuclear non-heme iron(III)-peroxo complex with an unusually high νO-O value and unprecedented electrophilic reactivity in oxidation reactions.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Benzaldeídos/química , Cinética , Ligantes , Estrutura Molecular , Oxirredução , Oxigênio/química , Sulfetos/química
12.
Chemistry ; 27(69): 17495-17503, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34590742

RESUMO

High-valent iron-imido complexes can perform C-H activation and sulfimidation reactions, but are far less studied than the more ubiquitous iron-oxo species. As case studies, we have looked at a recently published iron(V)-imido ligand π-cation radical complex, which is formally an iron(VI)-imido complex [FeV (NTs)(TAML+. )] (1; NTs=tosylimido), and an iron(V)-imido complex [FeV (NTs)(TAML)]- (2). Using a theoretical approach, we found that they have multiple energetically close-lying electromers, sometimes even without changing spin states, reminiscent of the so-called Compound I in Cytochrome P450. When studying their reactivity theoretically, it is indeed found that their electronic structures may change to perform efficient oxidations, emulating the multi-spin state reactivity in FeIV O systems. This is actually in contrast to the known [FeV (O)(TAML)]- species (3), where the reactions occur only on the ground spin state. We also looked into the whole reaction pathway for the C-H bond activation of 1,4-cyclohexadiene by these intermediates to reproduce the experimentally observed products, including steps that usually attract no interest (neither theoretically nor experimentally) due to their non-rate-limiting status and fast reactivity. A new "clustering non-rebound mechanism" is presented for this C-H activation reaction.


Assuntos
Ferro , Ligantes , Oxirredução
13.
Inorg Chem ; 60(6): 4058-4067, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33645218

RESUMO

Iron(V)-oxo complexes bearing negatively charged tetraamido macrocyclic ligands (TAMLs) have provided excellent opportunities to investigate the chemical properties and the mechanisms of oxidation reactions of mononuclear nonheme iron(V)-oxo intermediates. Herein, we report the differences in chemical properties and reactivities of two iron(V)-oxo TAML complexes differing by modification on the "Head" part of the TAML framework; one has a phenyl group at the "Head" part (1), whereas the other has four methyl groups replacing the phenyl ring (2). The reactivities of 1 and 2 in both C-H bond activation reactions, such as hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, and oxygen atom transfer (OAT) reactions, such as the oxidation of thioanisole and its derivatives, were compared experimentally. Under identical reaction conditions, 1 showed much greater reactivity than 2, such as a 102-fold decrease in HAT and a 105-fold decrease in OAT by replacing the phenyl group (i.e., 1) with four methyl groups (i.e., 2). Then, density functional theory calculations were performed to rationalize the reactivity differences between 1 and 2. Computations reproduced the experimental findings well and revealed that the replacement of the phenyl group in 1 with four methyl groups in 2 not only increased the steric hindrance but also enlarged the energy gap between the electron-donating orbital and the electron-accepting orbital. These two factors, steric hindrance and the orbital energy gap, resulted in differences in the reduction potentials of 1 and 2 and their reactivities in oxidation reactions.

14.
Nanotechnology ; 32(21)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33535194

RESUMO

An asymmetric dual-gate (DG) MoS2field-effect transistor (FET) with ultrahigh electrical performance and optical responsivity using atomic-layer-deposited HfO2as a top-gate (TG) dielectric was fabricated and investigated. The effective DG modulation of the MoS2FET exhibited an outstanding electrical performance with a high on/off current ratio of 6 × 108. Furthermore, a large threshold voltage modulation could be obtained from -20.5 to -39.3 V as a function of the TG voltage in a DG MoS2phototransistor. Meanwhile, the optical properties were systematically explored under a series of gate biases and illuminated optical power under 550 nm laser illumination. An ultrahigh photoresponsivity of 2.04 × 105AW-1has been demonstrated with the structure of a DG MoS2phototransistor because the electric field formed by the DG can separate photogenerated electrons and holes efficiently. Thus, the DG design for 2D materials with ultrahigh photoresponsivity provides a promising opportunity for the application of optoelectronic devices.

15.
World J Microbiol Biotechnol ; 37(3): 43, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547538

RESUMO

Pullulanase (EC 3.2.1.41) is a starch-debranching enzyme in the α-amylase family and specifically cleaves α-1,6-glycosidic linkages in starch-type polysaccharides, such as pullulan, ß-limited dextrin, glycogen, and amylopectin. It plays a key role in debranching and hydrolyzing starch completely, thus bring improved product quality, increased productivity, and reduced production cost in producing resistant starch, sugar syrup, and beer. Plenty of researches have been made with respects to the discovery of either thermophilic or mesophilic pullulanases, however, few examples meet the demand of industrial application. This review presents the progress made in the recent years from the first aspect of characteristics of pullulanases. The heterologous expression of pullulanases in different microbial hosts and the methods used to improve the expression effectiveness and the regulation of enzyme production are also described. Then, the function evolution of pullulanases from a protein engineering view is discussed. In addition, the immobilization strategy using novel materials is introduced to improve the recyclability of pullulanases. At the same time, we indicate the trends in the future research to facilitate the industrial application of pullulanases.


Assuntos
Bactérias/crescimento & desenvolvimento , Glicosídeo Hidrolases/genética , Engenharia de Proteínas/métodos , Bactérias/genética , Bactérias/metabolismo , Enzimas Imobilizadas/metabolismo , Evolução Molecular , Glicosídeo Hidrolases/metabolismo , Hidrólise , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
16.
J Am Chem Soc ; 142(8): 3891-3904, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32026685

RESUMO

We report for the first time electron-transfer (ET) properties of mononuclear nonheme iron-oxo and -imido complexes with the formal oxidation states of five and six, such as an iron(V)-imido TAML cation radical complex, which is formally an iron(VI)-imido complex [FeV(NTs)(TAML+•)] (1; NTs = tosylimido), an iron(V)-imido complex [FeV(NTs)(TAML)]- (2), and an iron(V)-oxo complex [FeV(O)(TAML)]- (3). The one-electron reduction potential (Ered vs SCE) of 1 was determined to be 0.86 V, which is much more positive than that of 2 (0.30 V), but the Ered of 3 is the most positive (1.04 V). The rate constants of ET of 1-3 were analyzed in light of the Marcus theory of adiabatic outer-sphere ET to determine the reorganization energies (λ) of ET reactions with 1-3; the λ of 1 (1.00 eV) is significantly smaller than those of 2 (1.98 eV) and 3 (2.25 eV) because of the ligand-centered ET reduction of 1 as compared to the metal-centered ET reduction of 2 and 3. In oxidation reactions, reactivities of 1-3 toward the nitrene transfer (NT) and oxygen atom transfer (OAT) to thioanisole and its derivatives and the C-H bond activation reactions, such as the hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, were compared experimentally. The differences in the redox reactivity of 1-3 depending on the reaction types, such as NT and OAT versus HAT, were interpreted by performing density functional theory calculations, showing that the ligand-centered reduction seen on ET reactions can switch to metal-centered reduction in NT and HAT.

17.
J Am Chem Soc ; 142(36): 15305-15319, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786748

RESUMO

Acid effects on the chemical properties of metal-oxygen intermediates have attracted much attention recently, such as the enhanced reactivity of high-valent metal(IV)-oxo species by binding proton(s) or Lewis acidic metal ion(s) in redox reactions. Herein, we report for the first time the proton effects of an iron(V)-oxo complex bearing a negatively charged tetraamido macrocyclic ligand (TAML) in oxygen atom transfer (OAT) and electron-transfer (ET) reactions. First, we synthesized and characterized a mononuclear nonheme Fe(V)-oxo TAML complex (1) and its protonated iron(V)-oxo complexes binding two and three protons, which are denoted as 2 and 3, respectively. The protons were found to bind to the TAML ligand of the Fe(V)-oxo species based on spectroscopic characterization, such as resonance Raman, extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR) measurements, along with density functional theory (DFT) calculations. The two-protons binding constant of 1 to produce 2 and the third protonation constant of 2 to produce 3 were determined to be 8.0(7) × 108 M-2 and 10(1) M-1, respectively. The reactivities of the proton-bound iron(V)-oxo complexes were investigated in OAT and ET reactions, showing a dramatic increase in the rate of sulfoxidation of thioanisole derivatives, such as 107 times increase in reactivity when the oxidation of p-CN-thioanisole by 1 was performed in the presence of HOTf (i.e., 200 mM). The one-electron reduction potential of 2 (Ered vs SCE = 0.97 V) was significantly shifted to the positive direction, compared to that of 1 (Ered vs SCE = 0.33 V). Upon further addition of a proton to a solution of 2, a more positive shift of the Ered value was observed with a slope of 47 mV/log([HOTf]). The sulfoxidation of thioanisole derivatives by 2 was shown to proceed via ET from thioanisoles to 2 or direct OAT from 2 to thioanisoles, depending on the ET driving force.


Assuntos
Compostos de Ferro/química , Oxigênio/química , Prótons , Teoria da Densidade Funcional , Compostos de Ferro/síntese química , Conformação Molecular , Oxirredução
18.
New Phytol ; 226(5): 1285-1298, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32083760

RESUMO

Different phosphorus (P)-acquisition strategies may be relevant for species coexistence and plant performance in terrestrial communities on P-deficient soils. However, how interspecific P facilitation functions in natural systems is largely unknown. We investigated the root physiological activities for P mobilization across 19 coexisting plant species in steppe vegetation, and then grew plants with various abilities to mobilize sorbed P in a microcosm in a glasshouse. We show that P facilitation mediated by rhizosphere processes of P-mobilizing species promoted growth and increased P content of neighbors in a species-specific manner. When roots interacted with a facilitating neighbor, Cleistogenes squarrosa and Bromus inermis tended to show greater plasticity of root proliferation or rhizosheath acid phosphatase activity compared with other non-P-mobilizing species. Greater variation in these root traits was strongly correlated with increased performance in the presence of a facilitator. The results also show, for the first time, that P facilitation was an important mechanism underlying a positive complementarity effect. Our study highlights that interspecific P-acquisition facilitation requires that facilitated neighbors exhibit a better match of root traits with a facilitating species. It provides a better understanding of species coexistence in P-limited communities.


Assuntos
Fósforo , Solo , Fenótipo , Raízes de Plantas , Poaceae , Rizosfera
19.
Nanotechnology ; 31(34): 345206, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32396888

RESUMO

The effects of x-ray irradiation on the mechanically exfoliated quasi-two-dimensional (quasi-2D) ß-Ga2O3 nanoflake field-effect transistors (FETs) under the condition of biasing voltage were systematically investigated for the first time. It has been revealed that the device experienced two stages during irradiation. At low ionizing doses (<240 krad), the device performance is mainly influenced by the photo-effect and the subsequent persistent photocurrent (PPC) effect as a result of the pre-existing electron traps (e-trap) in the oxides far away from the SiO2/ß-Ga2O3 interface. At larger doses (>240 krad), the device characteristics are dominated by the radiation-induced structural or compositional deterioration. The newly-generated e-traps are found located at the SiO2/ß-Ga2O3 interface. This study shed light on the future radiation-tolerant device fabrication process development, paving a way towards the feasibility and practicability of ß-Ga2O3-based devices in extreme-environment applications.

20.
J Am Chem Soc ; 141(19): 7675-7679, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31034219

RESUMO

Mononuclear nonheme iron(III)-hydroperoxo intermediates play key roles in biological oxidation reactions. In the present study, we report the highly intriguing reactivity of a nonheme iron(III)-hydroperoxo complex, [(TMC)FeIII(OOH)]2+ (1), in the deformylation of aldehydes, such as 2-phenylpropionaldehyde (2-PPA) and its derivatives; that is, the reaction pathway of the aldehyde deformylation by 1 varies depending on reaction conditions, such as temperature and substrate. At temperature above 248 K, the aldehyde deformylation occurs predominantly via a nucleophilic addition (NA) pathway. However, as the reaction temperature is lowered, the reaction pathway changes to a hydrogen atom transfer (HAT) pathway. Interestingly, the reaction rate becomes independent of temperature below 233 K with a huge kinetic isotope effect (KIE) value of 93 at 203 K, suggesting that the HAT reaction results from tunneling. In contrast, reactions with a deuterated 2-PPA at the α-position and 2-methyl-2-phenylpropionaldehyde proceed exclusively via a NA pathway irrespective of the reaction temperature. We conclude that the bifurcation pathways between NA and HAT result from the tunneling effect in the HAT reaction by 1. To the best of our knowledge, this study reports the first example showing that tunneling plays a significant role in the activation of substrate C-H bonds by a mononuclear nonheme iron(III)-hydroperoxo complex.


Assuntos
Aldeídos/química , Complexos de Coordenação/química , Hidrogênio/química , Ferro/química , Cinética , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa