Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 571: 10-5, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25726728

RESUMO

The ends of coiled-coil tropomyosin molecules are joined together by nine to ten residue-long head-to-tail "overlapping domains". These short four-chained interconnections ensure formation of continuous tropomyosin cables that wrap around actin filaments. Molecular Dynamics simulations indicate that the curvature and bending flexibility at the overlap is 10-20% greater than over the rest of the molecule, which might affect head-to-tail filament assembly on F-actin. Since the penultimate residue of striated muscle tropomyosin, Ser283, is a natural target of phosphorylating enzymes, we have assessed here if phosphorylation adjusts the mechanical properties of the tropomyosin overlap domain. MD simulations show that phosphorylation straightens the overlap to match the curvature of the remainder of tropomyosin while stiffening it to equal or exceed the rigidity of canonical coiled-coil regions. Corresponding EM data on phosphomimetic tropomyosin S283D corroborate these findings. The phosphorylation-induced change in mechanical properties of tropomyosin likely results from electrostatic interactions between C-terminal phosphoSer283 and N-terminal Lys12 in the four-chain overlap bundle, while promoting stronger interactions among surrounding residues and thus facilitating tropomyosin cable assembly. The stiffening effect of D283-tropomyosin noted correlates with previously observed enhanced actin-tropomyosin activation of myosin S1-ATPase, suggesting a role for the tropomyosin phosphorylation in potentiating muscle contraction.


Assuntos
Serina/química , Tropomiosina/química , Animais , Camundongos , Simulação de Dinâmica Molecular , Mutação , Fosforilação , Estrutura Terciária de Proteína , Tropomiosina/genética
2.
Biophys J ; 107(3): 694-699, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25099808

RESUMO

Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin's coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations.


Assuntos
Actinas/química , Simulação de Dinâmica Molecular , Tropomiosina/química , Actinas/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Tropomiosina/metabolismo
3.
Biochem Biophys Res Commun ; 446(1): 304-8, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24607906

RESUMO

To be effective as a gatekeeper regulating the access of binding proteins to the actin filament, adjacent tropomyosin molecules associate head-to-tail to form a continuous super-helical cable running along the filament surface. Chimeric head-to-tail structures have been solved by NMR and X-ray crystallography for N- and C-terminal segments of smooth and striated muscle tropomyosin spliced onto non-native coiled-coil forming peptides. The resulting 4-helix complexes have a tight coiled-coil N-terminus inserted into a separated pair of C-terminal helices, with some helical unfolding of the terminal chains in the striated muscle peptides. These overlap complexes are distinctly curved, much more so than elsewhere along the superhelical tropomyosin cable. To verify whether the non-native protein adducts (needed to stabilize the coiled-coil chimeras) perturb the overlap, we carried out Molecular Dynamics simulations of head-to-tail structures having only native tropomyosin sequences. We observe that the splayed chains all refold and become helical. Significantly, the curvature of both the smooth and the striated muscle overlap domain is reduced and becomes comparable to that of the rest of the tropomyosin cable. Moreover, the measured flexibility across the junction is small. This and the reduced curvature ensure that the super-helical cable matches the contours of F-actin without manifesting localized kinking and excessive flexibility, thus enabling the high degree of cooperativity in the regulation of myosin accessibility to actin filaments.


Assuntos
Tropomiosina/química , Actinas/química , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Músculo Esquelético/química , Músculo Liso/química , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química
4.
Arch Biochem Biophys ; 552-553: 68-73, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24071513

RESUMO

Coiled-coil tropomyosin, localized on actin filaments in virtually all eukaryotic cells, serves as a gatekeeper regulating access of the motor protein myosin and other actin-binding proteins onto the thin filament surface. Tropomyosin's modular pseudo-repeating pattern of approximately 39 amino acid residues is designed to allow binding of the coiled-coil to successive actin subunits along thin filaments. Even though different tropomyosin isoforms contain varying numbers of repeat modules, the pseudo-repeat length, in all cases, matches that of a single actin subunit. Thus, the seven pseudo-repeats of 42nm long muscle tropomyosin bind to seven successive actin subunits along thin filaments, while simultaneously bending into a super-helical conformation that is preshaped to the actin filament helix. In order to form a continuous cable on thin filaments that is free of gaps, adjacent tropomyosin molecules polymerize head-to-tail by means of a short (∼9 residue) overlap. Several laboratories have engineered peptides to mimic the N- and C-terminal tropomyosin association and to characterize the overlap structure. All overlapping domains examined show a compact N-terminal coiled-coil inserting into a partially opened C-terminal partner, where the opposing coiled-coils at the overlap junction face each other at up to ∼90° twist angles. Here, Molecular Dynamics (MD) simulations were carried out to determine constraints on the formation of the tropomyosin overlap complex and to assess the amount of twisting exhibited by full-length tropomyosin when bound to actin. With the exception of the last 20-40 C- and N-terminal residues, we find that the average tropomyosin structure closely resembles a "canonical" model proposed in the classic work of McLachlan and Stewart, displaying perfectly symmetrical supercoil geometry matching the F-actin helix with an integral number of coiled-coil turns, a coiled-coil helical pitch of 137Å, a superhelical pitch of 770Å, and no localized pseudo-rotation. Over the middle 70% of tropomyosin, the average twisting of the coiled-coil deviates only by 10° from the canonical model and the torsional freedom is very small (std. dev. of 7°). This small degree of twisting cannot yield the orthogonal N- and C-termini configuration observed experimentally. In marked contrast, considerable coiled-coil unfolding, splaying and twisting at N- and C-terminal ends is observed, providing the conformational plasticity needed for head-to-tail nexus formation.


Assuntos
Actinas/metabolismo , Tropomiosina/química , Tropomiosina/metabolismo , Actinas/química , Animais , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Ratos , Suínos
5.
J Biol Chem ; 287(5): 3165-74, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22119916

RESUMO

A large number of tropomyosin (Tm) isoforms function as gatekeepers of the actin filament, controlling the spatiotemporal access of actin-binding proteins to specialized actin networks. Residues ∼40-80 vary significantly among Tm isoforms, but the impact of sequence variation on Tm structure and interactions with actin is poorly understood, because structural studies have focused on skeletal muscle Tmα. We describe structures of N-terminal fragments of smooth muscle Tmα and Tmß (sm-Tmα and sm-Tmß). The 2.0-Å structure of sm-Tmα81 (81-aa) resembles that of skeletal Tmα, displaying a similar super-helical twist matching the contours of the actin filament. The 1.8-Å structure of sm-Tmα98 (98-aa) unexpectedly reveals an antiparallel coiled coil, with the two chains staggered by only 4 amino acids and displaying hydrophobic core interactions similar to those of the parallel dimer. In contrast, the 2.5-Å structure of sm-Tmß98, containing Gly-Ala-Ser at the N terminus to mimic acetylation, reveals a parallel coiled coil. None of the structures contains coiled-coil stabilizing elements, favoring the formation of head-to-tail overlap complexes in four of five crystallographically independent parallel dimers. These complexes show similarly arranged 4-helix bundles stabilized by hydrophobic interactions, but the extent of the overlap varies between sm-Tmß98 and sm-Tmα81 from 2 to 3 helical turns. The formation of overlap complexes thus appears to be an intrinsic property of the Tm coiled coil, with the specific nature of hydrophobic contacts determining the extent of the overlap. Overall, the results suggest that sequence variation among Tm isoforms has a limited effect on actin binding but could determine its gatekeeper function.


Assuntos
Músculo Liso/química , Multimerização Proteica , Tropomiosina/química , Animais , Galinhas , Cristalografia por Raios X , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tropomiosina/genética
6.
J Muscle Res Cell Motil ; 34(3-4): 155-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666668

RESUMO

Our thesis is that thin filament function can only be fully understood and muscle regulation then elucidated if atomic structures of the thin filament are available to reveal the positions of tropomyosin on actin in all physiological states. After all, it is tropomyosin influenced by troponin that regulates myosin-crossbridge cycling on actin and therefore controls contraction in all muscles. In addition, we maintain that a complete appreciation of thin filament activation also requires that the mechanical properties of tropomyosin itself are recognized and then related to the effect of myosin-association on actin. Taking the Gestalt-binding of tropomyosin into account, coupled with our electron microscopy structures and computational chemistry, we propose a comprehensive mechanism for tropomyosin regulatory movement over the actin filament surface that explains the cooperative muscle activation process. In fact, well-known point mutations of critical amino acids on the actin-tropomyosin binding interface disrupt Gestalt-binding and are associated with a number of inherited myopathies. Moreover, dysregulation of tropomyosin may also be a factor that interferes with the gatekeeping operation of non-muscle tropomyosin in the controlling interactions of a wide variety of cellular actin-binding proteins. The clinical relevance of Gestalt-binding is discussed in articles by the Marston and the Gunning groups in this special journal issue devoted to the impact of tropomyosin on biological systems.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Tropomiosina/metabolismo , Actinas/química , Humanos , Proteínas dos Microfilamentos/química , Músculos/química , Músculos/metabolismo , Tropomiosina/química , Troponina/química , Troponina/metabolismo
7.
Biochem Biophys Res Commun ; 424(3): 493-6, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22789852

RESUMO

Point mutations targeting muscle thin filament proteins are the cause of a number of cardiomyopathies. In many cases, biological effects of the mutations are well-documented, whereas their structural and mechanical impact on filament assembly and regulatory function is lacking. In order to elucidate molecular defects leading to cardiac dysfunction, we have examined the structural mechanics of two tropomyosin mutants, E180G and D175N, which are associated with hypertrophic cardiomyopathy (HCM). Tropomyosin is an α-helical coiled-coil dimer which polymerizes end-to-end to create an elongated superhelix that wraps around F-actin filaments of muscle and non-muscle cells, thus modulating the binding of other actin-binding proteins. Here, we study how flexibility changes in the E180G and D175N mutants might affect tropomyosin binding and regulatory motion on F-actin. Electron microscopy and Molecular Dynamics simulations show that E180G and D175N mutations cause an increase in bending flexibility of tropomyosin both locally and globally. This excess flexibility is likely to increase accessibility of the myosin-binding sites on F-actin, thus destabilizing the low-Ca(2+) relaxed-state of cardiac muscle. The resulting imbalance in the on-off switching mechanism of the mutants will shift the regulatory equilibrium towards Ca(2+)-activation of cardiac muscle, as is observed in affected muscle, accompanied by enhanced systolic activity, diastolic dysfunction, and cardiac compensations associated with HCM and heart failure.


Assuntos
Cardiomiopatia Hipertrófica/genética , Tropomiosina/química , Tropomiosina/genética , Actinas/química , Substituição de Aminoácidos , Asparagina/química , Asparagina/genética , Ácido Aspártico/química , Ácido Aspártico/genética , Cálcio/química , Ácido Glutâmico/química , Ácido Glutâmico/genética , Glicina/química , Glicina/genética , Humanos , Microscopia Eletrônica , Modelos Químicos , Simulação de Dinâmica Molecular , Mutação , Miosinas/química , Estrutura Secundária de Proteína
8.
Biophys J ; 100(4): 1005-13, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21320445

RESUMO

Electron microscopy and fiber diffraction studies of reconstituted F-actin-tropomyosin filaments reveal the azimuthal position of end-to-end linked tropomyosin molecules on the surface of actin. However, the longitudinal z-position of tropomyosin along F-actin is still uncertain. Without this information, atomic models of F-actin-tropomyosin filaments, free of constraints imposed by troponin or other actin-binding proteins, cannot be formulated, and thus optimal interfacial contacts between actin and tropomyosin remain unknown. Here, a computational search assessing electrostatic interactions for multiple azimuthal locations, z-positions, and pseudo-rotations of tropomyosin on F-actin was performed. The information gleaned was used to localize tropomyosin on F-actin, yielding an atomic model characterized by protein-protein contacts that primarily involve clusters of basic amino acids on actin subdomains 1 and 3 juxtaposed against acidic residues on the successive quasi-repeating units of tropomyosin. A virtually identical model generated by docking F-actin and tropomyosin atomic structures into electron microscopy reconstructions of F-actin-tropomyosin validated the above solution. Here, the z-position of tropomyosin alongside F-actin was defined by matching the seven broad and narrow motifs that typify tropomyosin's twisting superhelical coiled-coil to the wide and tapering tropomyosin densities seen in surface views of F-actin-tropomyosin reconstructions. The functional implications of the F-actin-tropomyosin models determined in this work are discussed.


Assuntos
Actinas/química , Actinas/ultraestrutura , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/métodos , Tropomiosina/química , Tropomiosina/ultraestrutura , Actinas/metabolismo , Aminoácidos/metabolismo , Animais , Imageamento Tridimensional , Modelos Moleculares , Ligação Proteica , Coelhos , Reprodutibilidade dos Testes , Eletricidade Estática , Tropomiosina/metabolismo
9.
Biophys J ; 99(3): 862-8, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20682264

RESUMO

The structural mechanics of tropomyosin are essential determinants of its affinity and positioning on F-actin. Thus, tissue-specific differences among tropomyosin isoforms may influence both access of actin-binding proteins along the actin filaments and the cooperativity of actin-myosin interactions. Here, 40 nm long smooth and striated muscle tropomyosin molecules were rotary-shadowed and compared by means of electron microscopy. Electron microscopy shows that striated muscle tropomyosin primarily consists of single molecules or paired molecules linked end-to-end. In contrast, smooth muscle tropomyosin is more a mixture of varying-length chains of end-to-end polymers. Both isoforms are characterized by gradually bending molecular contours that lack obvious signs of kinking. The flexural stiffness of the tropomyosins was quantified and evaluated. The persistence lengths along the shaft of rotary-shadowed smooth and striated muscle tropomyosin molecules are equivalent to each other (approximately 100 nm) and to values obtained from molecular-dynamics simulations of the tropomyosins; however, the persistence length surrounding the end-to-end linkage is almost twofold higher for smooth compared to cardiac muscle tropomyosin. The tendency of smooth muscle tropomyosin to form semi-rigid polymers with continuous and undampened rigidity may compensate for the lack of troponin-based structural support in smooth muscles and ensure positional fidelity on smooth muscle thin filaments.


Assuntos
Microscopia Eletrônica , Músculo Liso/metabolismo , Músculo Liso/ultraestrutura , Tropomiosina/ultraestrutura , Animais , Fenômenos Biomecânicos , Bovinos , Galinhas , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Multimerização Proteica , Reprodutibilidade dos Testes
10.
J Struct Biol ; 170(2): 313-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20117217

RESUMO

The inherent flexibility of rod-like tropomyosin coiled-coils is a significant factor that constrains tropomyosin's complex positional dynamics on actin filaments. Flexibility of elongated straight molecules typically is assessed by persistence length, a measure of lengthwise thermal bending fluctuations. However, if a molecule's equilibrium conformation is curved, this formulation yields an "apparent" persistence length ( approximately 100nm for tropomyosin), measuring deviations from idealized straight conformations which then overestimate actual dynamic flexibility. To obtain the "dynamic" persistence length, a true measurement of flexural stiffness, the average curvature of the molecule must be taken into account. Different methods used in our studies for measuring the dynamic persistence length directly from Molecular Dynamics (MD) simulations of tropomyosin are described here in detail. The dynamic persistence length found, 460+/-40nm, is approximately 12-times longer than tropomyosin and 5-times the apparent persistence length, showing that tropomyosin is considerably stiffer than previously thought. The longitudinal twisting behavior of tropomyosin during MD shows that the amplitude of end-to-end twisting fluctuation is approximately 30 degrees when tropomyosin adopts its near-average conformation. The measured bending and twisting flexibilities are used to evaluate different models of tropomyosin motion on F-actin.


Assuntos
Conformação Proteica , Tropomiosina/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Tropomiosina/metabolismo
11.
J Struct Biol ; 170(2): 307-12, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20026408

RESUMO

Complementarity between the tropomyosin supercoil and the helical contour of actin-filaments is required for the binding interaction of actin and tropomyosin (Li et al., 2010). Clusters of small alanine residues in place of canonical leucines along coiled-coil tropomyosin may be responsible for pre-shaping tropomyosin and promoting conformational complementarity to F-actin. A longitudinal displacement between the two chains of the tropomyosin coiled-coil induced by the alanine clusters could produce localized bending or limited flexibility along tropomyosin needed to shape tropomyosin (Brown and Cohen, 2005). To evaluate the influence of alanine clusters on tropomyosin curvature, we calculated the longitudinal displacement between amino acid residues on adjacent chains of the tropomyosin coiled-coil and related this "Z-displacement" to the position of the alanine clusters. Measurements were made on high-resolution crystal structures of tropomyosin fragments and on trajectories from molecular dynamics simulations of full-length alphaalpha-tropomyosin. We found no strict one-for-one spatial correlation between alanine cluster position and the Z-displacement. Neither did we find any direct correspondence between the clusters and the local curvature of tropomyosin. Rather than just causing specific local structural effects, the overall influence of alanine clusters is complex and delocalized, leading to a gradually changing bending pattern along the length of tropomyosin.


Assuntos
Conformação Proteica , Tropomiosina/química , Actinas/química , Actinas/metabolismo , Alanina/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Tropomiosina/metabolismo
12.
Mol Biosyst ; 11(8): 2180-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26038302

RESUMO

Molecular dynamics simulations of smooth and striated muscle myosin regulatory light chain (RLC) N-terminal extension (NTE) showed that diphosphorylation induces a disorder-to-order transition. Our goal here was to further explore the effects of mono- and diphosphorylation on the straightening and rigidification of the tarantula myosin RLC NTE. For that we used MD simulations followed by persistence length analysis to explore the consequences of secondary and tertiary structure changes occurring on RLC NTE following phosphorylation. Static and dynamic persistence length analysis of tarantula RLC NTE peptides suggest that diphosphorylation produces an important 24-fold straightening and a 16-fold rigidification of the RLC NTE, while monophosphorylation has a less profound effect. This new information on myosin structural mechanics, not fully revealed by previous EM and MD studies, add support to a cooperative phosphorylation-dependent activation mechanism as proposed for the tarantula thick filament. Our results suggest that the RLC NTE straightening and rigidification after Ser45 phosphorylation leads to a release of the constitutively Ser35 monophosphorylated free head swaying away from the thick filament shaft. This is so because the stiffened diphosphorylated RLC NTE would hinder the docking back of the free head after swaying away, becoming released and mobile and unable to recover its original interacting position on activation.


Assuntos
Músculo Liso/química , Cadeias Leves de Miosina/química , Dobramento de Proteína , Animais , Aracnídeos/química , Aracnídeos/metabolismo , Cálcio/metabolismo , Simulação de Dinâmica Molecular , Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosforilação , Estrutura Secundária de Proteína
13.
J Mol Biol ; 414(4): 477-84, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22037585

RESUMO

While mutations in the myosin subfragment 1 motor domain can directly disrupt the generation and transmission of force along myofibrils and lead to myopathy, the mechanism whereby mutations in the myosin rod influences mechanical function is less clear. Here, we used a combination of various imaging techniques and molecular dynamics simulations to test the hypothesis that perturbations in the myosin rod can disturb normal sarcomeric uniformity and, like motor domain lesions, would influence force production and propagation. We show that disrupting the rod can alter its nanomechanical properties and, in vivo, can drive asymmetric myofilament and sarcomere formation. Our imaging results indicate that myosin rod mutations likely disturb production and/or propagation of contractile force. This provides a unifying theory where common pathological cascades accompany both myosin motor and specific rod domain mutations. Finally, we suggest that sarcomeric inhomogeneity, caused by asymmetric thick filaments, could be a useful index of myopathic dysfunction.


Assuntos
Placa Motora/fisiologia , Doenças Musculares/fisiopatologia , Subfragmentos de Miosina/fisiologia , Sarcômeros/fisiologia , Humanos , Modelos Moleculares , Placa Motora/genética , Contração Muscular , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação , Subfragmentos de Miosina/química , Subfragmentos de Miosina/genética , Subfragmentos de Miosina/ultraestrutura , Sarcômeros/química , Sarcômeros/genética , Sarcômeros/ultraestrutura
14.
J Mol Biol ; 395(2): 327-39, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19883661

RESUMO

Wrapped superhelically around actin filaments, the coiled-coil alpha-helices of tropomyosin regulate muscle contraction by cooperatively blocking or exposing myosin-binding sites on actin. In non-muscle cells, tropomyosin additionally controls access of actin-binding proteins involved in cytoskeletal actin filament maintenance and remodeling. Tropomyosin's global shape and flexibility play a key role in the assembly, maintenance, and regulatory switching of thin filaments yet remain insufficiently characterized. Here, electron microscopy and molecular dynamics simulations yielded conformations of tropomyosin closely resembling each other. The electron microscopy and simulations show that isolated tropomyosin has an average curved conformation with a design well matched to its superhelical shape on F-actin. In addition, they show that tropomyosin bends smoothly yet anisotropically about its distinctive helically curved conformation, without any signs of unfolding, chain separation, localized kinks, or joints. Previous measurements, assuming tropomyosin to be straight on average, mistakenly suggested considerable flexibility (with persistence lengths only approximately 3 times the protein's length). However, taking the curved average structure determined here as reference for the flexibility measurements yields a persistence length of approximately 12 lengths, revealing that tropomyosin actually is semirigid. Corresponding simulation of a triple mutant (A74L-A78V-A81L) with weak actin affinity shows that it lacks shape complementarity to F-actin. Thus, tropomyosin's pre-shaped semirigid architecture is essential for the assembly of actin filaments. Further, we propose that once bound to thin filaments, tropomyosin will be stiff enough to act as a cooperative unit and move on actin in a concerted way between known regulatory states.


Assuntos
Actinas/química , Tropomiosina/química , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Anisotropia , Bovinos , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Termodinâmica , Tropomiosina/genética , Tropomiosina/metabolismo , Tropomiosina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa