Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(13): e9762, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693787

RESUMO

RATIONALE: Perillae Fructus (PF) is a common traditional Chinese medicine (TCM) for the treatment of asthma. It has not been effectively characterized by rosmarinic acid (RosA), which is currently designed as the sole quality indicator in the Chinese Pharmacopoeia. METHODS: This study introduced a database-aided ultrahigh-performance liquid chromatography equipped with quadrupole-Exactive-Orbitrap mass spectrometry (UHPLC/Q-Exactive-Orbitrap MS/MS) technology to putatively identify the compounds in PF, followed by literature research, quantum chemical calculation, and molecular docking to screen potential quality markers (Q-markers) of PF. RESULTS: A total of 27 compounds were putatively identified, 16 of which had not been previously found from PF. In particular, matrine, scopolamine, and RosA showed relatively high levels of content, stability, and drug-likeness. They exhibited interactions with the asthma-related target and demonstrated the TCM properties of PF. CONCLUSIONS: The database-aided UHPLC/Q-Exactive-Orbitrap MS/MS can identify at least 27 compounds in PF. Of these, 16 compounds are unexpected, and three compounds (matrine, scopolamine, and RosA) should be considered anticounterfeiting pharmacopoeia Q-markers of PF.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Simulação de Acoplamento Molecular , Farmacopeias como Assunto , Frutas/química , Escopolamina/análise , Depsídeos/análise , Depsídeos/química
2.
Phytochem Anal ; 35(2): 220-238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37735858

RESUMO

INTRODUCTION: Shenlingbaizhu granule, a Traditional Chinese Medicine prescription comprising Renshen, Gancao, and Shanyao, is widely consumed in China nowadays. OBJECTIVE: The study tries to propose pharmacopoeia quality markers (Q-markers) to prevent counterfeiting involving Renshen, Gancao, and Shanyao. METHODOLOGY: A novel strategy, that is, library-based ultra-high-performance liquid chromatography-quadrupole-orbitrap mass spectrometry, was used to analyse the lyophilised aqueous powder of Shenlingbaizhu granule. Subsequently, quantum chemistry calculation and UV-vis spectra scanning were also performed through theoretical or experimental approaches. RESULT: Thirty-two isomers have been strictly distinguished, especially positional isomeric isochlorogenic acid B versus isochlorogenic acid C, positional isomeric schaftoside versus isoschaftoside, positional isomeric ginsenoside Rg2 versus 20S-ginsenoside Rg3, and stereoisomeric 20S-ginsenoside Rg3 versus 20R-ginsenoside Rg3. Seventeen compounds were unexpectedly observed, particularly scoparone and pectolinarigenin, while a total of 76 bioactive compounds have been putatively identified in the study. The quantum chemistry calculation and UV-vis spectra scanning results revealed that glycyrrhizic acid, ginsenoside Re, ginsenoside Rb1, and diosgenin displayed different dipole moment values and maximum absorption wavelengths from each other. CONCLUSION: The study recommends glycyrrhizic acid, ginsenoside Re, ginsenoside Rb1, and diosgenin as four anti-counterfeiting Q-markers for the pharmacopoeia. The anti-counterfeiting Q-markers can be detected using conventional HPLC. The observation of 17 unexpected compounds updates our knowledge regarding the bioactives of Shenlingbaizhu granule.


Assuntos
Diosgenina , Ginsenosídeos , Ácido Glicirrízico , Cromatografia Líquida de Alta Pressão
3.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543029

RESUMO

Naodesheng Tablet (Naodesheng Pian), a traditional Chinese medicine formula for stroke treatment, is made up of five herbal medicines, i.e., Sanqi, Gegen, Honghua, Shanzha, and Chuanxiong. However, the current Pharmacopoeia quality-marker (Q-marker) system cannot detect possible adulteration. Our study tried to use a new strategy, i.e., standards-library-dependent ultra-high-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap MS/MS) putative identification, to reconstruct the Q-marker system. Through the strategy, 30 isomers were successfully differentiated (such as 2'-hydroxygenistein, luteolin, and kaempferol; ginsenoside Rg2 and ginsenoside Rg3; ginsenoside Rf and ginsenoside Rg1). In particular, 11 compounds were unexpectedly found in Naodesheng, including 2'-hydroxygenistein, 7,4'-dihydroxyflavone, pectolinarigenin, 7-methoxy-4'-hydroxyisoflavone, scoparone, matrine, 3,3',4',5,6,7,8-heptamethoxyflavone, 5-hydroxyflavone, diosgenin, chloesteryl acetate, and (+)-4-cholesten-3-one. In total, 68 compounds were putatively identified and fully elucidated for their MS spectra. Subsequently, relevant compounds were further investigated using UV-vis scanning experiments, semi-quantitative analysis, and quantum chemical calculation. Finally, five adulterated Naodesheng Tablets were used for validation experiments. The experiment successfully detected five adulterated ones via a lower-version LC-MS analysis. On this basis, three new candidates (hydroxy safflor yellow A (HSYA), citric acid, and levistilide A), along with puerarin and notoginsenoside R1, are re-nominated as the Q-markers for LC-MS analysis. The LC-MS analysis of puerarin, notoginsenoside R1, HSYA, citric acid, and levistilide A can clearly detect adulteration regarding all five herbal medicines mentioned above. Therefore, the reconstructed Q-markers are described as a "perfect" quality control system to detect adulteration in Naodesheng and will offer a valuable recommendation for the Pharmacopoeia Commission.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa-Espectrometria de Massas , Medicamentos de Ervas Chinesas/química , Ácido Cítrico
4.
J Sep Sci ; 46(13): e2300041, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37102419

RESUMO

Eucommiae Folium (Duzhongye) is a traditional Chinese medicine with a long history of use in China. However, its quality-marker in Chinese Pharmacopoeia is poorly defined nowadays. The study, therefore, conducted an ultra-high-performance liquid chromatography coupled with hybrid quadrupole-orbitrap tandem mass spectrometry analysis to obtain accurate data. The obtained data were then compared with the authentic standards library using Xcalibur 4.1 software package and TraceFinder General Quan. Through the comparison, the study has putatively identified 26 bioactive compounds, which include 17 flavonoid derivatives (catechin, quercetin 3-gentiobioside, quercetin 3-O-ß-D-glucose-7-O-ß-D-gentiobioside, taxifolin, myricetin 3-O-galactoside, myricitrin, hyperoside, rutin, isoquercitrin, quercetin 3-O-ß-xylopyranoside, quercitrin, isorhamnetin 3-O-ß-D-glucoside, quercetin, kaempferol, S-eriodictyol, S-naringenin, and phloridzin), four caffeoylquinic acids (neochlorogenic acid, chlorogenic acid, isochlorogenic acid A, and isochlorogenic acid C), two alkaloids (vincamine and jervine), one lignan (pinoresinol), one xanthone (cowaxanthone B), and one steroid (cholesteryl acetate). Of these, flavonoid isoquercitrin is recommended as the new and additional pharmacopeia quality-marker candidate, which can not only overcome the unreliability of old quality-marker but also recognize the possible counterfeit.


Assuntos
Quercetina , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Quercetina/análise , Flavonoides/análise , Folhas de Planta/química
5.
Phytother Res ; 37(10): 4607-4620, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37380363

RESUMO

Atractylenolide-III (AT-III) is well known as its role in antioxidant and anti-inflammatory. Present study was aimed to figure out its effects on osteoarthritis and potential mechanisms. Rat model, human osteoarthritis cartilage explants as well as rat/human chondrocyte cultures were prepared to test AT-III's effects on osteoarthritis progression and chondrocyte senescence. Potential targeted molecules of AT-III were predicted using network pharmacology and molecular docking, assessed by Western blotting and then verified with rescue experiments. AT-III treatment alleviated osteoarthritis severity (shown by OARSI grading score and micro-CT) and chondrocyte senescence (indexed by levels of SA-ß-gal, P16, P53, MMP13, ROS and ratio of healthy/collapsed mitochondrial membrane potentials). Network pharmacology and molecular docking suggested that AT-III might play role through NF-κB pathway. Further experiments revealed that AT-III reduced phosphorylation of IKKα/ß, IκBα and P65 in NF-κB pathway. As well as nuclear translocation of p65. Both in vivo and in vitro experiments indicated that AT-III's effects on osteoarthritis and anti-senescence were reversed by an NF-κB agonist. AT-III could alleviate osteoarthritis by inhibiting chondrocyte senescence through NF-κB pathway, which indicated that AT-III is a prospective drug for osteoarthritis treatment.

6.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956790

RESUMO

Phytophenol dimerization, which is a radical-mediated coupling reaction, plays a critical role in many fields, including lignin biosynthesis. To understand the reaction, 2,2-diphenyl-1-picrylhydrazyl radical was used to initiate a series of phytophenol dimerization reactions in methanol. The products were identified using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS) analysis in situ. The identified products mainly included biphenols, magnolol, honokiol, gingerol 6,6'-dimers, 3,6-dimethoxylcatechol ß,ß' dimer, euphorbetin, bis-eugenol, dehydrodiisoeugenol, trans-ε-viniferin, (+) pinoresinol, and (-) pinoresinol. Structure-function relationship analysis allowed four basic rules to be defined: meta-excluded, C-C bonding domination, ortho-diOH co-activation, and exocyclic C=C involvement. The exocyclic C=C involvement, however, required conjugation with the phenolic core and the para-site of the -OH group, to yield a furan-fused dimer with two chiral centers. Computational chemistry indicated that the entire process was completed via a radical coupling reaction and an intramolecular conjugate addition reaction. Similar results were also found for the horseradish peroxidase (HRP)-catalyzed coniferyl alcohol dimerization, which produced (+) and (-) pinoresinols (but no (-) epipinoresinol), suggesting that the HRP-catalyzed process was essentially an exocyclic C=C-involved phytophenol dimerization reaction. The reaction was highly diastereoselective. This was attributed to the intramolecular reaction, which prohibited Re-attack. The four basic rules and diastereoselectivity can explain and even predict the main products in various chemical and biological events, especially oxidase-catalyzed lignin cyclization.


Assuntos
Lignina , Espectrometria de Massas em Tandem , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Dimerização , Espectrometria de Massas por Ionização por Electrospray/métodos
7.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669598

RESUMO

Synthetic arylamines and dietary phytophenolics could inhibit ferroptosis, a recently discovered regulated cell death process. However, no study indicates whether their inhibitory mechanisms are inherently different. Herein, the ferroptosis-inhibitory mechanisms of selected ferrostatin-1 (Fer-1) and two dietary stilbenes (piceatannol and astringin) were compared. Cellular assays suggested that the ferroptosis-inhibitory and electron-transfer potential levels decreased as follows: Fer-1 >> piceatannol > astringin; however, the hydrogen-donating potential had an order different from that observed by the antioxidant experiments and quantum chemistry calculations. Quantum calculations suggested that Fer-1 has a much lower ionization potential than the two stilbenes, and the aromatic N-atoms were surrounded by the largest electron clouds. By comparison, the C4'O-H groups in the two stilbenes exhibited the lowest bond disassociation enthalpies. Finally, the three were found to produce corresponding dimer peaks through ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis. In conclusion, Fer-1 mainly depends on the electron transfer of aromatic N-atoms to construct a redox recycle. However, piceatannol and astringin preferentially donate hydrogen atoms at the 4'-OH position to mediate the conventional antioxidant mechanism that inhibits ferroptosis, and to ultimately form dimers. These results suggest that dietary phytophenols may be safer ferroptosis inhibitors for balancing normal and ferroptotic cells than arylamines with high electron-transfer potential.


Assuntos
Cicloexilaminas/farmacologia , Dieta , Ferroptose/efeitos dos fármacos , Glucosídeos/farmacologia , Fenilenodiaminas/farmacologia , Estilbenos/farmacologia , Animais , Antioxidantes/análise , Óxidos N-Cíclicos/química , Cicloexilaminas/química , Glucosídeos/química , Imidazóis/química , Concentração Inibidora 50 , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Modelos Moleculares , Fenilenodiaminas/química , Piperazinas/farmacologia , Ratos Sprague-Dawley , Eletricidade Estática , Estilbenos/química
8.
Molecules ; 26(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299576

RESUMO

The search for a safe and effective inhibitor of ferroptosis, a recently described cell death pathway, has attracted increasing interest from scientists. Two hydrolyzable tannins, chebulagic acid and chebulinic acid, were selected for the study. Their optimized conformations were calculated using computational chemistry at the B3LYP-D3(BJ)/6-31G and B3LYP-D3(BJ)/6-311 + G(d,p) levels. The results suggested that (1) chebulagic acid presented a chair conformation, while chebulinic acid presented a skew-boat conformation; (2) the formation of chebulagic acid requires 762.1729 kcal/mol more molecular energy than chebulinic acid; and (3) the 3,6-HHDP (hexahydroxydiphenoyl) moiety was shown to be in an (R)- absolute stereoconfiguration. Subsequently, the ferroptosis inhibition of both tannins was determined using a erastin-treated bone marrow-derived mesenchymal stem cells (bmMSCs) model and compared to that of ferrostatin-1 (Fer-1). The relative inhibitory levels decreased in the following order: Fer-1 > chebulagic acid > chebulinic acid, as also revealed by the in vitro antioxidant assays. The UHPLC-ESI-Q-TOF-MS analysis suggested that, when treated with 16-(2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy free radicals, Fer-1 generated dimeric products, whereas the two acids did not. In conclusion, two hydrolyzable tannins, chebulagic acid and chebulinic acid, can act as natural ferroptosis inhibitors. Their ferroptosis inhibition is mediated by regular antioxidant pathways (ROS scavenging and iron chelation), rather than the redox-based catalytic recycling pathway exhibited by Fer-1. Through antioxidant pathways, the HHDP moiety in chebulagic acid enables ferroptosis-inhibitory action of hydrolyzable tannins.


Assuntos
Benzopiranos/farmacologia , Ferroptose/efeitos dos fármacos , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Benzopiranos/química , Células Cultivadas , Glucosídeos/química , Taninos Hidrolisáveis/química , Células-Tronco Mesenquimais/citologia , Modelos Moleculares , Ratos Sprague-Dawley
9.
Molecules ; 25(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033283

RESUMO

To elucidate the mechanism of anti-ferroptosis and examine structural optimization in natural phenolics, cellular and chemical assays were performed with 2'-hydroxy chalcone butein and dihydroflavone (S)-butin. C11-BODIPY staining and flow cytometric assays suggest that butein more effectively inhibits ferroptosis in erastin-treated bone marrow-derived mesenchymal stem cells than (S)-butin. Butein also exhibited higher antioxidant percentages than (S)-butin in five antioxidant assays: linoleic acid emulsion assay, Fe3+-reducing antioxidant power assay, Cu2+-reducing antioxidant power assay, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping assay, and α,α-diphenyl-ß-picrylhydrazyl radical (DPPH•)-trapping assay. Their reaction products with DPPH• were further analyzed using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS). Butein and (S)-butin produced a butein 5,5-dimer (m/z 542, 271, 253, 225, 135, and 91) and a (S)-butin 5',5'-dimer (m/z 542, 389, 269, 253, and 151), respectively. Interestingly, butein forms a cross dimer with (S)-butin (m/z 542, 523, 433, 419, 415, 406, and 375). Therefore, we conclude that butein and (S)-butin exert anti-ferroptotic action via an antioxidant pathway (especially the hydrogen atom transfer pathway). Following this pathway, butein and (S)-butin yield both self-dimers and cross dimers. Butein displays superior antioxidant or anti-ferroptosis action to (S)-butin. This can be attributed the decrease in π-π conjugation in butein due to saturation of its α,ß-double bond and loss of its 2'-hydroxy group upon biocatalytical isomerization.


Assuntos
Antioxidantes/farmacologia , Chalconas/química , Chalconas/farmacologia , Ferroptose/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Antioxidantes/química , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Chalcona/análogos & derivados , Chalcona/química , Cromatografia Líquida de Alta Pressão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
10.
BMC Complement Altern Med ; 19(1): 275, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638966

RESUMO

BACKGROUND: Pyrola decorata H. Andres, is exclusively distributed in China and a source of traditional Chinese herbal medicine Luxiancao for more than 2000 years. Here, we evaluated the antioxidant and cytoprotective effects of P. decorata and its five phenolic components (protocatechuic acid, gallic acid, hyperoside, 2''-O-galloylhyperin, and quercetin), and discussed their antioxidant chemistry. METHODS: A lyophilized aqueous extract of P. decorata (LAEP) was prepared and analyzed with high-performance liquid chromatography (HPLC). LAEP and its five phenolic components were comparatively investigated using five antioxidant assays, including ferric-reducing antioxidant power, cupric ion-reducing antioxidant capacity, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical (PTIO•)-scavenging, 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical (ABTS+•)-scavenging activities. The reaction products of the five phenolic components with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl radical (4-methoxy-TEMPO•) were determined with ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis. LAEP and its five phenolic components were incubated with bone marrow-derived mesenchymal stem cells (bmMSCs) subjected to oxidative stress to demonstrate their cytoprotective effects with a flow cytometry assay. RESULTS: In the five antioxidant assays, LAEP and its five phenolic components dose-dependently increased the radical-scavenging (or reducing power) activities. However, the IC50 values of hyperoside were consistently higher than those of 2''-O-galloylhyperin. UPLC-ESI-Q-TOF-MS/MS analysis results indicated that the five phenolics could yield dimer products in the presence of 4-methoxy-TEMPO• via the radical adduct formation (RAF) pathway. Flow cytometry assay results confirmed the cytoprotective activity of LAEP and its five phenolic components toward stressed bmMSCs. In particular, 2''-O-galloylhyperin could more effectively reduce the percentage of damaged bmMSCs than hyperoside. CONCLUSION: LAEP and its five phenolic components may undergo redox-based pathways (such as electron transfer and H+ transfer) and covalent-based pathway (i.e., RAF) to exhibit antioxidant activity. One consequence of RAF is the generation of phenolic-phenolic dimer. In both organic and aqueous media, 2''-O-galloylhyperin exhibited higher redox-based antioxidant levels (or cytoprotective levels) than those with hyperoside. The differences could be attributed to 2''-O-galloylation reaction.


Assuntos
Antioxidantes/química , Medicamentos de Ervas Chinesas/química , Fenóis/química , Substâncias Protetoras/química , Pyrola/química , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , China , Cromatografia Líquida de Alta Pressão , Humanos , Estrutura Molecular , Fenóis/farmacologia , Substâncias Protetoras/farmacologia , Espectrometria de Massas em Tandem
11.
Molecules ; 24(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366105

RESUMO

The biological process, 3-O-galactosylation, is important in plant cells. To understand the mechanism of the reduction of flavonol antioxidative activity by 3-O-galactosylation, myricetin-3-O-galactoside (M3OGa) and myricetin aglycone were each incubated with 2 mol α,α-diphenyl-ß-picrylhydrazyl radical (DPPH•) and subsequently comparatively analyzed for radical adduct formation (RAF) products using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS) technology. The analyses revealed that M3OGa afforded an M3OGa-DPPH adduct (m/z 873.1573) and an M3OGa-M3OGa dimer (m/z 958.1620). Similarly, myricetin yielded a myricetin-DPPH adduct (m/z 711.1039) and a myricetin-myricetin dimer (m/z 634.0544). Subsequently, M3OGa and myricetin were compared using three redox-dependent antioxidant analyses, including DPPH•-trapping analysis, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-trapping analysis, and •O2 inhibition analysis. In the three analyses, M3OGa always possessed higher IC50 values than those of myricetin. Conclusively, M3OGa and its myricetin aglycone could trap the free radical via a chain reaction comprising of a propagation step and a termination step. At the propagation step, both M3OGa and myricetin could trap radicals through redox-dependent antioxidant pathways. The 3-O-galactosylation process, however, could limit these pathways; thus, M3OGa is an inferior antioxidant compared to its myricetin aglycone. Nevertheless, 3-O-galactosylation has a negligible effect on the termination step. This 3-O-galactosylation effect has provided novel evidence that the difference in the antioxidative activities of phytophenols exists at the propagation step rather than the termination step.


Assuntos
Flavonoides/química , Sequestradores de Radicais Livres/química , Galactosídeos/química , Superóxidos/química , Compostos de Bifenilo/antagonistas & inibidores , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/metabolismo , Dimerização , Flavonoides/metabolismo , Sequestradores de Radicais Livres/metabolismo , Radicais Livres , Galactosídeos/metabolismo , Glicosilação , Imidazóis/química , Imidazóis/metabolismo , Cinética , Oxirredução , Picratos/antagonistas & inibidores , Células Vegetais/química , Células Vegetais/metabolismo , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
12.
Molecules ; 24(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142008

RESUMO

To probe the effect of 3',8″-dimerization on antioxidant flavonoids, acacetin and its 3',8″-dimer isoginkgetin were comparatively analyzed using three antioxidant assays, namely, the ·O2- scavenging assay, the Cu2+ reducing assay, and the 2,2'-azino bis(3-ethylbenzothiazolin-6-sulfonic acid) radical scavenging assay. In these assays, acacetin had consistently higher IC50 values than isoginkgetin. Subsequently, the acacetin was incubated with 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxy radicals (4-methoxy-TEMPO) and then analyzed by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-Q-TOF-MS) technology. The results of the UHPLC-ESI-Q-TOF-MS analysis suggested the presence of a dimer with m/z 565, 550, 413, 389, 374, 345, 330, and 283 peaks. By comparison, standard isoginkgetin yielded peaks at m/z 565, 533, 518, 489, 401, 389, 374, and 151 in the mass spectra. Based on these experimental data, MS interpretation, and the relevant literature, we concluded that isoginkgetin had higher electron transfer potential than its monomer because of the 3',8″-dimerization. Additionally, acacetin can produce a dimer during its antioxidant process; however, the dimer is not isoginkgetin.


Assuntos
Antioxidantes/química , Biflavonoides/química , Dimerização , Flavonas/química , Flavonoides/química , Concentração Inibidora 50 , Espectrometria de Massas , Modelos Moleculares
13.
Molecules ; 23(7)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997352

RESUMO

This study used the 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) trapping model to study the antioxidant activities of 16 natural xanthones in aqueous solution, including garcinone C, γ-mangostin, subelliptenone G, mangiferin, 1,6,7-trihydroxy-xanthone, 1,2,5-trihydroxyxanthone, 1,5,6-trihydroxyxanthone, norathyriol, 1,3,5,6-tetrahydroxy-xanthone, isojacareubin, 1,3,5,8-tetrahydroxyxanthone, isomangiferin, 2-hydroxyxanthone, 7-O-methylmangiferin, neomangiferin, and lancerin. It was observed that most of the 16 xanthones could scavenge the PTIO• radical in a dose-dependent manner at pH 4.5 and 7.4. Among them, 12 xanthones of the para-di-OHs (or ortho-di-OHs) type always exhibited lower half maximal inhibitory concentration (IC50) values than those not of the para-di-OHs (or ortho-di-OHs) type. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis revealed that most of these xanthones gave xanthone-xanthone dimers after incubation with PTIO•, except for neomangiferin. Based on these data, we concluded that the antioxidant activity of phenolic xanthone may be mediated by electron-transfer (ET) plus H⁺-transfer mechanisms. Through these mechanisms, some xanthones can further dimerize unless they bear huge substituents with steric hindrance. Four substituent types (i.e., para-di-OHs, 5,6-di-OHs, 6,7-di-OHs, and 7,8-di-OHs) dominate the antioxidant activity of phenolic xanthones, while other substituents (including isoprenyl and 3-hydroxy-3-methylbutyl substituents) play a minor role as long as they do not break the above four types.


Assuntos
Óxidos N-Cíclicos/química , Radicais Livres/química , Imidazóis/química , Fenóis/química , Xantonas/química , Antioxidantes/química
14.
Molecules ; 24(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577443

RESUMO

Echinatin and its 1,1-dimethyl-2-propenyl derivative licochalcone A are two chalcones found in the Chinese herbal medicine Gancao. First, their antioxidant mechanisms were investigated using four sets of colorimetric measurements in this study. Three sets were performed in aqueous solution, namely Cu2+-reduction, Fe3+-reduction, and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging measurements, while 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•)-scavenging colorimetric measurements were conducted in methanol solution. The four sets of measurements showed that the radical-scavenging (or metal-reduction) percentages for both echinatin and licochalcone A increased dose-dependently. However, echinatin always gave higher IC50 values than licochalcone A. Further, each product of the reactions of the chalcones with DPPH• was determined using electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS). The UPLC-ESI-Q-TOF-MS/MS determination for echinatin yielded several echinatin⁻DPPH adduct peaks (m/z 662, 226, and 196) and dimeric echinatin peaks (m/z 538, 417, and 297). Similarly, that for licochalcone A yielded licochalcone A-DPPH adduct peaks (m/z 730, 226, and 196) and dimeric licochalcone A peaks (m/z 674 and 553). Finally, the above experimental data were analyzed using mass spectrometry data analysis techniques, resonance theory, and ionization constant calculations. It was concluded that, (i) in aqueous solution, both echinatin and licochalcone A may undergo an electron transfer (ET) and a proton transfer (PT) to cause the antioxidant action. In addition, (ii) in alcoholic solution, hydrogen atom transfer (HAT) antioxidant mechanisms may also occur for both. HAT may preferably occur at the 4-OH, rather than the 4'-OH. Accordingly, the oxygen at the 4-position participates in radical adduct formation (RAF). Lastly, (iii) the 1,1-dimethyl-2-propenyl substituent improves the antioxidant action in both aqueous and alcoholic solutions.


Assuntos
Chalconas/química , Antioxidantes/química , Compostos de Bifenilo/química , Espectrometria de Massas , Estrutura Molecular , Fenol/química , Picratos/química
15.
Molecules ; 23(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563286

RESUMO

To explore whether and how glucuronidation affects pyrogallol-type phytophenols, scutellarein and scutellarin (scutellarein-7-O-glucuronide) were comparatively investigated using a set of antioxidant analyses, including spectrophotometric analysis, UV-vis spectra analysis, and ultra-performance liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis. In spectrophotometric analyses of the scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH•), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•), and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radicals (PTIO•) and the reduction of Cu2+ ions, scutellarein showed lower IC50 values than scutellarin. However, in •O2--scavenging spectrophotometric analysis, scutellarein showed higher IC50 value than scutellarin. The analysis of UV-Vis spectra obtained after the Fe2+-chelating reaction of scutellarin showed a typical UV-Vis peak (λmax = 611 nm), while scutellarein showed no typical peak. In UPLC-ESI-Q-TOF-MS/MS analysis, mixing of scutellarein with DPPH• yielded MS peaks (m/z 678, 632, 615, 450, 420, 381, 329, 300, 288, 227, 196, 182, 161, and 117) corresponding to the scutellarein-DPPH adduct and an MS peak (m/z 570) corresponding to the scutellarein-scutellarein dimer. Scutellarin, however, generated no MS peak. On the basis of these findings, it can be concluded that glucuronidation of pyrogallol-type phytophenol antioxidants has a dual effect. On the one hand, glucuronidation can decrease the antioxidant potentials (except for •O2- scavenging) and further lower the possibility of radical adduct formation (RAF), while on the other hand, it can enhance the •O2--scavenging and Fe2+-chelating potentials.


Assuntos
Antioxidantes/química , Apigenina/química , Glucuronatos/química , Pirogalol/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray , Ácidos Sulfônicos/química , Espectrometria de Massas em Tandem
16.
Molecules ; 23(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486289

RESUMO

To clarify the role of the B-ring in antioxidant flavonols, we performed a comparative study between galangin with a null B-ring and 3,5,7-trihydroxychromone without a B-ring using five spectrophotometric assays, namely, •O2--scavenging, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•)-scavenging, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide radical-scavenging, 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical-scavenging, and Fe3+-reducing activity. The DPPH•-scavenging reaction products of these assays were further analyzed by ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) technology. In the five spectrophotometric assays, galangin and 3,5,7-trihydroxychromone dose-dependently increased their radical-scavenging (or Fe3+-reducing) percentages. However, galangin always gave lower IC50 values than those of 3,5,7-trihydroxychromone. In the UPLC-ESI-Q-TOF-MS/MS analysis, galangin yielded galangin-DPPH adduct MS peaks (m/z 662, 434, 301, 227,196, and 151) and galangin-galangin dimer MS peaks (m/z 538, 385, 268, 239, 211, 195, and 151). 3,5,7-Trihydroxychromone, however, only generated m/z 3,5,7-trihydroxychromone-DPPH adduct MS peaks (m/z 586, 539, 227, 196, and 136). In conclusion, both galangin and 3,5,7-trihydroxychromone could similarly undergo multiple antioxidant pathways, including redox-dependent pathways (such as electron transfer (ET) and ET plus proton transfer (PT)) and a non-redox-dependent radical adduct formation (RAF) pathway; thus, the null B-ring could hardly change their antioxidant pathways. However, it did improve their antioxidant levels in these pathways. Such improvement of the B-ring toward an antioxidant flavonol is associated with its π-π conjugation, which can provide more resonance forms and bonding sites.


Assuntos
Antioxidantes/análise , Cromonas/análise , Flavonoides/análise , Flavonóis/análise , Antioxidantes/química , Compostos de Bifenilo/química , Cromonas/química , Flavonóis/química , Radicais Livres/química , Concentração Inibidora 50 , Modelos Moleculares , Picratos/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
17.
Molecules ; 23(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562698

RESUMO

α-Viniferin and caraphenol A, the two oligostilbenes, have the sole difference of the presence or absence of an exocyclic double bond at the π-π conjugative site. In this study, the antioxidant capacity and relevant mechanisms for α-viniferin and caraphenol A were comparatively explored using spectrophotometry, UV-visible spectral analysis, and electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis. The spectrophotometric results suggested that caraphenol A always gave lower IC50 values than α-viniferin in cupric ion-reducing antioxidant capacity assay, ferric-reducing antioxidant power assay, 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical-scavenging assays. In UV-visible spectra analysis, caraphenol A was observed to show enhanced peaks at 250-350 nm when mixed with Fe2+, but α-viniferin exhibited no similar effects. UPLC-ESI-Q-TOF-MS/MS analysis revealed that α-viniferin mixed with DPPH• produced radical adduct formation (RAF) peak (m/z = 1070-1072). We conclude that the antioxidant action of α-viniferin and caraphenol A may involve both redox-mediated mechanisms (especially electron transfer and H⁺-transfer) and non-redox-mediated mechanisms (including Fe2+-chelating or RAF). The π-π conjugation of the exocyclic double bond in caraphenol A can greatly enhance the redox-mediated antioxidant mechanisms and partially promote the Fe2+-chelating mechanism. This makes caraphenol A far superior to α-viniferin in total antioxidant levels.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Cromatografia Líquida de Alta Pressão , Concentração Inibidora 50 , Conformação Molecular , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
18.
Molecules ; 23(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30036971

RESUMO

The antioxidant and cytoprotective capacities of E-resveratrol and Z-resveratrol were compared using chemical and cellular assays. Chemical assays revealed that the two isomers were dose-dependently active in •O2--scavenging, ferric reducing antioxidant power (FRAP), Cu2+-reducing antioxidant capacity (CUPRAC), 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•)-scavenging (pH 7.4 and pH 4.5), and 1,1-diphenyl-2-picryl-hydrazyl (DPPH•)-scavenging assays. The cellular assay indicated that the two isomers could also increase cell viabilities. However, quantitative analyses suggested that E-resveratrol exhibited stronger effects than Z-resveratrol in all chemical and cellular assays. Finally, the conformations of E-resveratrol and Z-resveratrol were analyzed. It can be concluded that both E-resveratrol and Z-resveratrol can promote redox-related pathways to exhibit antioxidant action and consequently protect bone marrow-derived mesenchymal stem cells (bmMSCs) from oxidative damage. These pathways include electron transfer (ET) and H⁺-transfer, and likely include hydrogen atom transfer (HAT). The E-configuration, however, improves antioxidant and cytoprotective capacities of resveratrols. The detrimental effect of the Z-configuration may be attributed to the non-planar preferential conformation, where two dihedral angles block the extension of the conjugative system.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Animais , Citoproteção , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ratos , Resveratrol
19.
Molecules ; 23(4)2018 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-29690528

RESUMO

In this study, two natural phenolic polyamines, kukoamine A and B, were comparatively investigated for their antioxidant and cytoprotective effects in Fenton-damaged bone marrow-derived mesenchymal stem cells (bmMSCs). When compared with kukoamine B, kukoamine A consistently demonstrated higher IC50 values in PTIO•-scavenging (pH 7.4), Cu2+-reducing, DPPH•-scavenging, •O2−-scavenging, and •OH-scavenging assays. However, in the PTIO•-scavenging assay, the IC50 values of each kukoamine varied with pH value. In the Fe2+-chelating assay, kukoamine B presented greater UV-Vis absorption and darker color than kukoamine A. In the HPLC⁻ESI⁻MS/MS analysis, kukoamine A with DPPH• produced radical-adduct-formation (RAF) peaks (m/z 922 and 713). The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl (MTT) assay suggested that both kukoamines concentration-dependently increased the viabilities of Fenton-damaged bmMSCs at 56.5⁻188.4 µM. However, kukoamine A showed lower viability percentages than kukoamine B. In conclusion, the two isomers kukoamine A and B can protect bmMSCs from Fenton-induced damage, possibly through direct or indirect antioxidant pathways, including electron-transfer, proton-transfer, hydrogen atom transfer, RAF, and Fe2+-chelating. Since kukoamine B possesses higher potentials than kukoamine A in these pathways, kukoamine B is thus superior to kukoamine A in terms of cytoprotection. These differences can ultimately be attributed to positional isomeric effects.


Assuntos
Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Citoproteção/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Espermina/análogos & derivados , Isomerismo , Estrutura Molecular , Fenóis/química , Espermina/farmacologia
20.
Molecules ; 23(4)2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29587376

RESUMO

Two 2-phenyl-benzofurans, moracin C {2-[3',5'-dihydroxy-4'-(3-methlbut-2-enyl)phenyl]-6-hydroxybenzofuran} and its isomer iso-moracin C{2-[3',5'-dihydroxy-4'-(3-methlbut-1-enyl)phenyl]-6-hydroxybenzofuran}, were comparatively studied using redox-related antioxidant assays and non-redox antioxidant assays. Moracin C always resulted in higher IC50 values than iso-moracin C in the redox-related antioxidant assays, including •O2--inhibition, Cu2+-reducing power, DPPH•-inhibition, and ABTS⁺•-inhibition assays. In the non-redox antioxidant assay, moracin C and iso-moracin C underwent similar radical-adduct-formation (RAF), evidenced by the peaks at m/z 704 and m/z 618 in HPLC-MS spectra. In conclusion, both moracin C and iso-moracin C can act as 2-phenyl-benzofuran antioxidants; their antioxidant mechanisms may include redox-related ET and H⁺-transfer, and non-redox RAF. A double bond at the conjugation position can enhance the redox-related antioxidant potential, but hardly affects the RAF potential.


Assuntos
Antioxidantes/química , Benzofuranos/química , Estilbenos/química , Antioxidantes/farmacologia , Benzofuranos/farmacologia , Isomerismo , Estrutura Molecular , Prótons , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa