RESUMO
In clinical practice, the diagnosis of ulcerative colitis (UC) mainly relies on a comprehensive analysis of a series of signs and symptoms of patients. The current biomarkers for diagnosis of UC and prognostic prediction of anti-TNF-α therapy are inaccurate. The present study aimed to perform an integrative analysis of gene expression profiles in patients with UC. A total of seven datasets from the GEO database that met our strict inclusion criteria were included. After identifying differentially expressed genes (DEGs) between UC patients and healthy individuals, the diagnostic and prognostic utility of the DEGs were then analyzed via least absolute shrinkage and selection operator and support-vector machine recursive feature elimination. Subgroup analyses of the treated and untreated groups, as well as the treatment-response group and non-response group, were also performed. Furthermore, the relationship between the expressions of UC-related genes and infiltration of immune cells in the course of treatment was also investigated. Immunohistochemical (IHC) assay was used to verify the gene expression in inflamed UC tissues. When considering all the applied methods, DUOX2, PI3, S100P, MMP7, and S100A8 had priority to be defined as the characteristic genes among DEGs. The area under curve (AUC) of the five genes, which were all consistently over-expressed, based on an external validation dataset, were all above 0.94 for UC diagnosis. Four of the five genes (DUOX2, PI3, MMP7, and S100A8) were down-regulated between treatment-responsive and nonresponsive patients. A significant difference was also observed concerning the infiltration of immune cells, including macrophage and neutrophil, between the two groups (treatment responsive and nonresponsive). The changes in the expression of DUOX2 and MMP7 based on the IHC assay were highly consistent with the results obtained in the current study. This confirmed the mild to moderate diagnostic and predictive value of DUOX2 and MMP7 in patients with UC. The conducted analyses showed that the expression profile of the five identified biomarkers accurately detects UC, whereas four of the five genes evidently predicted the response to anti-TNF-α therapy.
Assuntos
Colite Ulcerativa , Fator de Necrose Tumoral alfa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/patologia , Fator de Necrose Tumoral alfa/genética , Perfilação da Expressão Gênica , Biomarcadores/metabolismo , Prognóstico , Metaloproteinase 7 da Matriz/genética , Transcriptoma , Oxidases Duais/genética , Oxidases Duais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Feminino , Estudos de Casos e ControlesRESUMO
BACKGROUND: Breast cancer (BC) is a prevalent malignancy affecting women, characterized by a substantial occurrence rate. Squalene epoxidase (SQLE) is a crucial regulator of ferroptosis and has been associated with promoting cell growth and invasion in different types of human cancers. This study aimed to investigate the functional significance of SQLE in BC and elucidate the underlying molecular mechanisms involved. METHODS: SQLE expression levels in BC tissues were evaluated using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. Cell viability, invasion, migration, and cell cycle distribution were assessed using a combination of assays, including the Cell Counting Kit-8, EdU, colony formation, Transwell, and wound healing assays and flow cytometry analysis. Measurement of intracellular reactive oxygen species (ROS), malondialdehyde assay, and glutathione assay were utilized to investigate ferroptosis. Furthermore, co-immunoprecipitation and immunofluorescence assays were conducted to explore the correlation between SQLE and CCNB1. The in vivo tumor growth was evaluated by conducting a xenograft tumorigenicity assay to investigate the impact of SQLE. RESULTS: SQLE expression was significantly increased in BC, and higher SQLE expression levels were significantly associated with an unfavorable prognosis. In vitro functional assays revealed that the overexpression of SQLE markedly enhanced the proliferation, migration, and invasion capacities of BC cells. Furthermore, SQLE overexpression facilitated tumor growth in nude mice. Mechanistically, SQLE alleviated the ubiquitination modification of CCNB1, leading to enhanced stability of the CCNB1 protein and decreased intracellular ROS levels. Ultimately, this inhibited ferroptosis and facilitated the progression of BC. Our findings have provided insights into a crucial pathway by which elevated SQLE expression confers protection to BC cells against ferroptosis, thus promoting cancer progression. SQLE may serve as a novel oncological marker and a potential therapeutic target for BC progression. CONCLUSIONS: In conclusion, this study provides evidence that SQLE plays a regulatory role in BC progression by modulating CCNB1 and ferroptosis. These findings offer valuable insights into the role of SQLE in the pathogenesis of BC and demonstrate its potential as a therapeutic target for treating BC.
RESUMO
Various studies have demonstrated that ubiquitin D (UBD) is overexpressed in different cancer types and may serve as a potential prognostic factor. However, additional research is necessary to establish the prognostic significance and possible role of UBD in glioma. Transcriptomic expression data from The Cancer Genome Atlas database (TCGA) and Chinese Glioma Genome Atlas (CGGA) were analyzed to identify UBD expression differences in tumor and normal tissues. The relative levels of UBD in glioma and normal tissues were determined using qRT-PCR and WB. Logistic regression analysis was performed to investigate the association between UBD expression and clinicopathological characteristics of glioma patients. To evaluate the diagnostic and prognostic predictive values of UBD, we used Kaplan-Meier survival curves, Cox regression analysis, diagnostic receiver operating characteristic (ROC) curves, and nomogram model. We also conducted wound healing assays, transwell assays, EdU assays, and colony formation assays to verify the UBD function. Gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as gene set enrichment analysis (GSEA), were employed to determine the functions of UBD. Finally, we performed the western blot assays to assess changes in EMT markers as well as p-PI3K, p-AKT, and p-mTOR expressions. Our study revealed a remarkable increase of UBD expression in glioma samples. Cox regression analysis demonstrated that high expression of UBD mRNA was an independent prognostic factor for overall survival (OS) in TCGA. ROC curve analysis showed that UBD expression levels could differentiate glioma from adjacent normal tissues accurately. Additionally, knockdown of UBD reduced the migration, invasion, and proliferation ability of glioma cells while UBD overexpression had the opposite effect. GSEA showed that the expression of UBD involved with various pathways including epithelial-mesenchymal transition (EMT), PI3K-AKT-mTOR signaling, P53 pathway, angiogenesis, inflammatory response, KRAS signaling, hypoxia, as well as TGF-ß signaling. Furthermore, our findings suggest that UBD accelerates the activation of EMT and PI3K/AKT/mTOR pathway.
RESUMO
Adenosylmethionine decarboxylase 1 (AMD1) has been implicated in carcinogenesis and tumor progression. However, the potential biomechanism and biological implications of AMD1 in breast cancer (BC) remain unclear. The purpose of this study was to investigate the effect of abnormal expression of AMD1 in BC. The expression of AMD1 in different human BC cell lines was studied by using western blotting and qRT-PCR. In vitro cell proliferation, clone formation, cell cycle and apoptosis assays were performed to explore the effect of AMD1 on cellular proliferation. Xenograft mouse models were established to elucidate the role of AMD1 in BC growth. The expression profiles of AMD1 in 28 pairs of BC tissues and adjacent noncancerous tissues (ANTs) were investigated by using western blotting and immunohistochemistry. The clinical implication and prognostic evaluation of AMD1 in BC were examined by excavating the online database. We found that the expression levels of AMD1 in BC cell lines were significantly higher than those in the normal human breast epithelial cell line MCF-10A. In addition, AMD1 potentiated proliferation, induced cell cycle progression and inhibited apoptosis in BC cells. Subcutaneous tumor xenografts also supported the promotive role of AMD1 in BC growth. We discovered that the level of AMD1 in BC tissues was significantly higher than that in ANTs. Using the online database, increased AMD1 was found to be associated with clinical indicators and predicted a poor prognosis in patients with BC. Our findings indicate that AMD1 elicits potent oncogenic effects on the malignant progression of BC. AMD1 might serve as a promising diagnostic biomarker and therapeutic target for patients with BC.
Assuntos
Neoplasias da Mama , MicroRNAs , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Animais , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , PoliaminasRESUMO
Although chemicals have been traditionally regulated on an individual basis in aquatic ecosystems, they often co-exist as different types of complex mixtures. Laboratory assays were conducted for assessing the responses of rare minnow (Gobiocypris rarus) to individual and mixture chemicals [trace element cadmium (Cd), thiamethoxam, deltamethrin, malathion and prochloraz]. Data obtained from 96 h semi-static toxicity assays implied that deltamethrin elicited the highest toxic effect on the various developmental phases (larval, juvenile and adult phases) of G. rarus with LC50 values ranging from 0.00061 to 0.25 mg a.i. L-1, followed by prochloraz, malathion and Cd with 96-h LC50 values ranging from 0.49 to 1.1, from 7.1 to 26, and from 7.6 to 15 mg a.i. L-1, respectively. Thiamethoxam elicited the lowest toxic effect on the organisms with 96-h LC50 values ranging from 38 to 202 mg a.i. L-1. Larval phase was not always the most sensitive period in the three detected phases to most of chemicals. Chemical combinations containing deltamethrin and malathion displayed synergetic responses to the larvae of G. rarus. Besides, the binary mixtures of Cd-deltamethrin and Cd-prochloraz also exhibited synergetic response to rare minnows. Our results indicate that extra information is necessary to develop practical criteria for selecting chemical combinations that require legislative attention according to their likelihood to exert synergetic responses. Thence, more investigations on mixture toxicities of various chemicals should be taken as a priority for producing synergetic interaction to improve the environmental risk assessment of chemicals.
Assuntos
Cádmio/toxicidade , Cyprinidae/fisiologia , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Imidazóis , MalationRESUMO
Quadrivalent Cr4+ theoretically exhibits great potential to achieve higher photo-luminescence (PL) lifetime based temperature sensitivity than the commonly utilized trivalent Cr3+, but the problem is how to stabilize the anomalous quadrivalent chemical state of Cr4+. Here we propose a type of glass-ceramic phase structure with a precipitated ZnAl2O4 crystalline sub-phase and a residual ZnO-SrO-SiO2 glassy sub-phase, where Cr4+ can be well stabilized in the residual glassy sub-phase. From PL spectra, Cr4+ or Cr3+ was found to be located at Td (tetrahedral crystal filed) or Oh (octahedral crystal filed) sites with a relatively high crystal field strength. The thermally coupled 1E(1D)/3T2(3F) states of Cr4+ or the 2E(2G)/4T2(4F) states of Cr3+ were revealed as competitive energy level pairs suitable for PL lifetime based temperature sensing. Quadrivalent Cr4+ had a particular PL lifetime ratio of 1E(1D)/3T2(3F) up to 103, which was much higher than that (101) of trivalent Cr3+:2E(2G)/4T2(4F). This supported Cr4+ to eventually achieve a higher temperature sensitivity (1.72% K-1) one order of magnitude higher than that of Cr3+ (0.83% K-1). This provides the possibility of utilizing Cr4+-doped glass to develop a type of temperature sensor with high precision and sensitivity.
RESUMO
BACKGROUND: In response to activation of the canonical WNT signaling pathway, ß-catenin cooperates with Lef/Tcf (lymphoid enhancer factor/T-cell factor) transcription factors to drive expression of Wnt target genes. The canonical WNT signaling pathway is involved in development, wound repair, and tumorigenesis. Studies examining the involvement of the canonical WNT signaling pathway in the development of ovarian surface epithelium (OSE) and ovarian carcinogenesis, however, have recently begun to emerge. In this study, we investigated the modulation of ß-catenin and ß-catenin/Tcf-signaling activity within the OSE using responsive transgenic mice and examined the response of primary OSE cells and ovarian cancer cell lines to activation of the canonical WNT signaling pathway. RESULTS: ß-catenin was localized to the lateral membrane of the ovarian epithelium. Stimulation of primary OSE cells in vitro with LiCl or Wnt3a led to GSK-3ß inhibition and stabilization of ß-catenin but failed to induce ß-catenin/Tcf-mediated lacZ expression. Furthermore, E-cadherin expression was downregulated and the proliferative potency of OSE cells increased. Of four ovarian cancers cell lines screened, only the HEY cell line demonstrated induction of luciferase reporter upon canonical WNT stimulation. CONCLUSIONS: These observations suggest that in ovarian adenocarcinoma, dysregulated WNT signaling may not always be indicative of ß-catenin/Tcf-mediated transcriptional activity.
Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica/fisiologia , Ovário/metabolismo , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Antimaníacos/farmacologia , Linhagem Celular Tumoral , Células Epiteliais/citologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/fisiologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Cloreto de Lítio/farmacologia , Camundongos , Camundongos Transgênicos , Ovário/citologia , Fatores de Transcrição TCF/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , beta Catenina/genéticaRESUMO
Heavy metals and pesticides are significant pollutants in aquatic environments, often leading to combined pollution and exerting toxic effects on aquatic organisms. With the rapid growth of modern industry and agriculture, heavy metal cadmium (Cd) and pesticide triazophos (TRI) are frequently detected together in various water bodies, particularly in agricultural watersheds. However, the combined toxic mechanisms of these pollutants on fish remain poorly understood. This experiment involved a 21-day co-exposure of Cd and TRI to the hook snout carp Opsariichthys bidens to investigate the toxic effects on liver tissues at both enzymatic and transcriptional levels. Biochemical analysis revealed that both individual and combined exposures significantly increased the content or activity of caspase-3 (CASP-3) and malondialdehyde (MDA). Moreover, the impact on these parameters was greater in the combined exposure groups compared to the corresponding individual exposure groups. These findings suggested that both individual and combined exposures could induce mitochondrial dysfunction and lipid peroxidation damage, with combined exposure exacerbating the toxicological effects of each individual pollutant. Furthermore, at the molecular level, both individual and combined exposures upregulated the expression levels of cu-sod, cat, and erß, while downregulating the expression of il-1. Similar to the patterns observed in the biochemical parameters, the combined exposure group exhibited a greater impact on the expression of these genes compared to the individual exposure groups. These results indicated that exposure to Cd, TRI, and their combination induced oxidative stress, endocrine disruption, and immunosuppression in fish livers, with more severe effects observed in the combined exposure group. Overall, the interaction between Cd and TRI appeared to be synergistic, shedding light on the toxic mechanisms by which fish livers responded to these pollutants. These findings contributed to the understanding of mixture risk assessment of pollutants and were valuable for the conservation of aquatic resources.
Assuntos
Cádmio , Fígado , Organotiofosfatos , Triazóis , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Organotiofosfatos/toxicidade , Triazóis/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 3/genética , Carpas/metabolismo , Carpas/genética , Superóxido Dismutase/metabolismo , Praguicidas/toxicidadeRESUMO
Therapeutic benefits and underlying biomechanism(s) of antibody drug conjugates (ADC) in combination with other targeted therapeutics are largely unknown. Here, the synergy between ADC and epigenetic drug decitabine (DAC), a clinically approved DNA methylation inhibitor, in multiple preclinical models of melanoma specifically investigated. Mechanistically, the underlying biomechanisms of how DAC cooperatively worked with ICAM1 antibody conjugated DNA topoisomerase I inhibitor DXd (I1-DXd) is elucidated. DAC treatment significantly enhanced anti-tumor efficacy of I1-DXd by upregulating antigen expression, enhancing antibody internalization and potentiating tumor sensitivity by epigenetically reprogramming of melanoma. Meanwhile, I1-DXd/DAC combination also exerted regulatory effects on tumor microenvironment (TME) by enhancing tumor infiltration of innate and adaptive immune cells and improving penetration of ADCs with a boosted antitumor immunity. This study provides a rational ADC combination strategy for solid tumor treatment.
Assuntos
Decitabina , Modelos Animais de Doenças , Epigênese Genética , Imunoconjugados , Molécula 1 de Adesão Intercelular , Melanoma , Animais , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Decitabina/farmacologia , Decitabina/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , HumanosRESUMO
BACKGROUND: An English version of the Patient Perception of Patient-Centeredness (PPPC) scale was recently revised, and it is necessary to test this instrument in different primary care populations. AIM: This study aimed to assess the validity and reliability of a Chinese version of the PPPC scale. DESIGN: A mixed method was used in this study. The Delphi method was used to collect qualitative and quantitative data to address the content validity of the PPPC scale by calculating the Content Validity Index, Content Validity Ratio, the adjusted Kappa, and the Item Impact Score. Confirmatory factor analysis (CFA) and exploratory factor analysis (EFA) were used to assess the construct validity of the PPPC scale through a cross-sectional survey. The internal consistency was also assessed. SETTING/PARTICIPANTS: In the Delphi consultation, seven experts were consulted through a questionnaire sent by email. The cross-sectional survey interviewed 188 outpatients in Guangzhou city and 108 outpatients in Hohhot City from community health service centers or stations face-to-face. RESULTS: The 21 items in the scale were relevant to their component. The Item-level Content Validity Index for each item was higher than 0.79, and the average Scale-level content validity index was 0.97 in each evaluation round. The initial proposed 4-factor CFA model did not fit adequately. Still, we found a 3-factor solution based on our EFA model and the validation via the CFA model (model fit: [Formula: see text], P < 0.001, RMSEA = 0.044, CFI = 0.981; factor loadings: 0.553 to 0.888). Cronbach's α also indicated good internal consistency reliability: The overall Cronbach's α was 0.922, and the Cronbach's α for each factor was 0.851, 0.872, and 0.717, respectively. CONCLUSIONS: The Chinese version of the PPPC scale provides a valuable tool for evaluating patient-centered medical service quality.
Assuntos
Percepção , Atenção Primária à Saúde , Humanos , Estudos Transversais , Reprodutibilidade dos Testes , Inquéritos e QuestionáriosRESUMO
Photodynamic therapy (PDT) represents an attractive promising route for melanoma treatment. However, its therapeutic efficacy is compromised by inefficient drug delivery and high glutathione (GSH) levels in cancer cells. To overcome these challenges, microneedles (MNs) system loaded with GSH-scavenging nanocomposites was presented for nitric oxide (NO) enhanced PDT. The nanocomposites consisted of S-nitroso-N-acrylate penicillamine (SNAP; a NO donor) grafted fourth-generation polyamide amine dendrimer (G4) and chlorin e6 (Ce6). Upon local insertion of polyvinylpyrrolidone MNs, G4-SNAP/Ce6 composites were fast delivered and significantly amplified the therapeutic effects during PDT, via GSH depletion and reactive nitrogen species generation. Even with a single administration and low power light exposure, MNs with G4-SNAP/Ce6 effectively halt the tumor progression. The system demonstrated better cancer ablation efficacy than Ce6 alone toward melanoma. The strategy may inspire new ideas for future PDT-related therapy for skin tumors.
RESUMO
PURPOSE: HER2-low breast cancer (BC) has renewed interests of researchers worldwide. Here, we aimed to investigate the clinicopathological characteristics of patients with HER2-low, HER2-0 and HER2 ultra-low BC and make conclusion. METHODS: We collected cases of patients who were diagnosed as BC at Jingling General hospital. Immunohistochemistry was used to redefine HER2 scores. Kaplan-Meier methods and Cox proportional hazards regression analysis were used to compare survival. RESULTS: We found that HER2-low BC was more frequent in hormone receptor (HR)-positive BC patients and was associated with fewer T3-T4, lower breast conserving surgery rate and higher adjuvant chemotherapy rate. HER2-low BC patients had better overall survival (OS) compared to HER2-0 BC in premenopausal and stage II BC. Furthermore, HER2-0 BC patients had lower Ki-67 expression levels compared to HER2-ultra low and HER2-low BC in HR-negative BC. HER2-0 BC patients also had worse OS rate compared to those with HER2-ultra low BC in HR-positive BC. Finally, HER2-0 BC patients showed a higher pathological response rate compared to those with HER2-low BC after neoadjuvant chemotherapy. CONCLUSIONS: These findings suggest that HER2-low BC has distinct biology and clinical features compared to HER2-0 BC, and more investigation is needed to understand the biology of HER2-ultra low BC.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Terapia Neoadjuvante , Prognóstico , Receptor ErbB-2 , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêuticoRESUMO
Pesticide exposure remains one of the main factors in the population decline of insect pollinators. It is urgently necessary to assess the effects of mixtures on pollinator risk assessments because they are often exposed to numerous agrochemicals. In the present study, we explored the mixture toxic effects of thiacloprid (THI) and cyproconazole (CYP) on honey bees (Apis mellifera L.). Our findings revealed that THI possessed higher acute toxicity to A. mellifera (96-h LC50 value of 216.3 mg a.i. L-1) than CYP (96-h LC50 value of 601.4 mg a.i. L-1). It's worth noting that the mixture of THI and CYP exerted an acute synergistic effect on honey bees. At the same time, the activities of detoxification enzyme cytochrome P450s (CYP450s) and neuro target enzyme Acetylcholinesterase (AChE), as well as the expressions of seven genes (CRBXase, CYP306A1, CYP6AS14, apidaecin, defensing-2, vtg, and gp-93) associated with detoxification metabolism, immune response, development, and endoplasmic reticulum stress, were significantly altered in the combined treatment compared with the corresponding individual exposures of THI or CYP. These data indicated that a mixture of THI and CYP could disturb the physiological homeostasis of honey bees. Our study provides a theoretical basis for in-depth studies on the impacts of pesticide mixtures on the health of honey bees. Our study also provides important guidance for the rational application of pesticide mixtures to protect pollinators in agricultural production effectively.
Assuntos
Inseticidas , Praguicidas , Abelhas , Animais , Inseticidas/toxicidade , Acetilcolinesterase , Praguicidas/toxicidadeRESUMO
Heterostructure technologies have been regarded as promising methods in the development of electrolytes with high ionic conductivity for low-temperature solid oxide fuel cells (LT-SOFCs). Here, a novel semiconductor/insulator (n-i) heterostructure strategy has been proposed to develop composite electrolytes for LT-SOFCs based on CeO2 and the insulator amorphous alumina (a-Al2O3). The constructed CeO2/a-Al2O3 electrolyte exhibits an ionic conductivity of up to 0.127 S cm-1, and its fuel cell achieves a maximum power density (MPD) of 1017 mW cm-2 with an open-circuit voltage (OCV) of 1.14 V at 550 °C without the short-circuiting problem, suggesting that the introduction of a-Al2O3 can effectively suppress the electron conduction of CeO2. It is found that the potential energy barrier at the heterointerfaces caused by the ultrawide band gap of the insulator a-Al2O3 plays an important role in restraining electron conduction. Simultaneously, the thermoelectric effect of the insulator induces more oxygen vacancies because of interface charge compensation, which further promotes ionic transport and results in high ionic conductivity and fuel cell performance. This study presents a practical n-i heterostructure electrolyte design, and further research confirmed the advanced functionality of the CeO2/a-Al2O3 electrolyte. Our study may open frontiers in the field of developing high-efficiency electrolytes of LT-SOFCs using insulating materials such as amorphous alumina.
RESUMO
Circular RNAs (circRNAs), according to a growing body of research, are thought to be important in the initiation and development of a number of cancers. However, more research is needed to fully understand how circRNAs work at the molecular level in triple-negative breast cancer (TNBC). RNA sequencing was conducted on four sets of TNBC samples and their corresponding adjacent noncancerous tissues (ANTs). The circSNX25 expression was assessed using quantitative real-time PCR in TNBC tissues and cells. Several in vitro and in vivo experiments were conducted in order to examine the function of circSNX25 in TNBC carcinogenesis. Through luciferase reporter and chromatin immunoprecipitation (ChIP) assays, we also investigated the potential regulation of circSNX25 biogenesis by specificity protein 1 (SP1). To further validate the relationship between circSNX25 and COPI coat complex subunit beta 1 (COPB1) in TNBC, we conducted circRNA pull-down and RNA immunoprecipitation (RIP) assays using the MS2/MS2-CP system. Online databases were analyzed to examine the clinical implications and prognostic value of COPB1 in TNBC. A higher circSNX25 expression levels were observed in tissues and cells of TNBC. Silencing circSNX25 notably inhibited TNBC cell proliferation, triggered apoptosis, and hindered tumor growth in vivo. Conversely, upregulation of circSNX25 had the opposite effects. Mechanistically, circSNX25 was found to physically interact with COPB1. Importantly, we identified that SP1 may enhance circSNX25 biogenesis. COPB1 levels were markedly higher in TNBC cells. Analysis of online databases revealed that TNBC patients with elevated COPB1 levels had a poorer prognosis. Our findings demonstrate that SP1-mediated circSNX25 promotes TNBC carcinogenesis and development. CircSNX25 may therefore serve as both a diagnostic and therapeutic biomarker for TNBC patients.
Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , RNA Circular/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , RNA/genética , Proliferação de Células/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Movimento Celular/genéticaRESUMO
WNTs comprise a family of secreted glycoproteins that are essential for normal embryonic development of the female reproductive system. The functional role that WNTs play in the postnatal ovary is poorly defined. We have shown previously that Wnt2 and Fzd4 mRNAs are expressed in granulosa cells of the postnatal rat ovary. Here we examine the effects of Wnt2 overexpression in a rat granulosa cell line (DC3) that displays characteristics of granulosa cells at an early stage of follicular development. We show that DC3 cells express a 7.7-kb Fzd4 mRNA transcript similar in size to that detected in the rat and human ovary. Our results demonstrate that Wnt2 overexpression in DC3 promotes cytosolic and nuclear accumulation of beta-catenin (CTNNB1), but does not stimulate CTNNB1/TCF-dependent (pGL3-OT) transcriptional activity. We show that chibby (CBY1), a nuclear CTNNB1-associated antagonist of the WNT pathway, is expressed in DC3 cells and associates with CTNNB1 in the presence and absence of Wnt2 overexpression, suggesting that Cby1 contributes to suppression of CTNNB1/TCF-dependent transcription in these cells. Our results show that Wnt2 overexpression in DC3 cells increases follistatin (Fst) mRNA expression and promotes resistance to activin-induced cell deletion. Taken together, our results suggest that WNT2 opposes activin activity in granulosa cells by up-regulating expression of the activin antagonist Fst in a CTNNB1/TCF-independent manner, and that rat granulosa cells express factors, including Cby1, that suppress CTNNB1/TCF-dependent signal transduction in the presence of a WNT signal.
Assuntos
Células da Granulosa/metabolismo , Proteína Wnt2/genética , beta Catenina/metabolismo , Ativinas/metabolismo , Ativinas/farmacologia , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Primers do DNA/genética , Feminino , Folistatina/genética , Receptores Frizzled/genética , Células da Granulosa/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo , Regulação para CimaRESUMO
Background: Cuproptosis, a genetic process of copper-dependent cell death linked to mitochondria respiration, demonstrates its correlation with inhibiting tumoral angiogenesis and motility. Recent studies have developed systematic bioinformatics frameworks to identify the association of cuproptosis with tumors but any non-neoplastic diseases. Therefore, against the background of an increased incidence of inflammatory bowel disease (IBD), the landscape of cuproptosis regulation in IBD is a critical need to be investigated. Methods: The differentially expressed cuproptosis-related genes (DECRGs) were identified with human sequencing profiles for four inflammatory digestive disorders. Another four independent IBD datasets from GEO were used as a validation cohort. And experimental mice model provides another validation method. Using single sample gene set enrichment analysis (ssGSEA), receiver operating characteristic (ROC) curve, CIBERSORT, and consensus clustering algorithms, we explored the association between immune score and cuproptosis-related genes, as well as the diagnostic value of these genes. Molecular docking screened potential interaction of IBD drugs with the structural regulator by Autodock Vina. Results: Cuproptosis-related regulators exhibited extensive differential expression in Crohn's Disease (CD), Ulcerative Colitis (UC), Celiac Disease (CEL), and IBD-induced cancer (IBD-CA) that share common differential genes (PDHA1, DBT, DLAT, LIAS). The differential expression of DECRGs was reverified in the validated cohort and immunohistochemistry assay. Moreover, the cell signaling pathways and ontology mainly focused on the mitochondrial respiratory function, which was highly enriched in Gene set enrichment analysis (GSEA). According to ssGSEA and ROC, when considering the four regulators, which showed robust association with immune infiltration in IBD, the area under the ROC (AUC) was 0.743. In addition, two clusters of consensus clustering based on the four regulators exhibit different immune phenotypes. According to molecular docking results, methotrexate gained the highest binding affinity to the main chain of key cuproptosis-related regulators compared with the remaining ten drugs. Conclusion: Cuproptosis-related regulators were widely linked to risk variants, immune cells, immune function, and drug efficacy in IBD. Regulation of cuproptosis may deeply influence the occurrence and development of patients with IBD.
Assuntos
Apoptose , Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Doença Crônica , Doenças Inflamatórias Intestinais/genética , Simulação de Acoplamento Molecular , Curva ROC , CobreRESUMO
Melanoma is the most aggressive skin malignancy that continues to increase in worldwide. The transferability and multidrug resistance lead to a high fatality rate. Synergistic administration of hydrophilic carboplatin (CBP) and hydrophobic vorinostat (SAHA) can be a reliable way to treat multidrug-resistant melanoma. However, the different physicochemical properties of multiple drugs make it difficult to achieve a convenient co-loading and an ideal synergistic treatment efficacy. To solve the problem, a microneedle patch with a porous "spongy coating" (PF-MNP) was fabricated. Firstly, (polyacrylic acid/polyethyleneimine)10 multilayers were fabricated on polymethyl methacrylate MNP. Then a "spongy coating" was achieved by acid treatment and freeze-drying. Due to the capillary effect, hydrophobic SAHA and hydrophilic CBP could be conveniently adsorbed step-by-step. The two drugs could distribute evenly on the surface, and the morphology of MNP remained good. The loading content of SAHA and CBP was easily regulated by adjusting the concentration of the adsorption solution, and MNP could quickly release most drugs within 30 min. The final in vivo experiments proved that CBP/SAHA co-loaded PF-MNP had the best therapeutic efficiency for multidrug-resistant melanoma. The MNP with a "spongy coating" showed potential to be a safe and efficient transdermal delivery platform for multiple drugs.
Assuntos
Melanoma , Polietilenoimina , Humanos , Preparações Farmacêuticas , Polietilenoimina/química , Carboplatina , Vorinostat , Polimetil Metacrilato , Melanoma/tratamento farmacológicoRESUMO
The potential health effects of microplastics (MPs) have become a public concern due to their ubiquitousness in the environment and life. Numerous studies have demonstrated that a high dose of MPs can adversely affect gastrointestinal health. However, few studies have focused on the impact of microplastics on patients' health with respect to gastrointestinal diseases. Inflammatory bowel disease (IBD) has emerged as a global disease with a rapidly increasing incidence. IBD, a specific gastrointestinal illness characterized by acute, chronic inflammation and intestinal barrier dysfunction, might increase sensitivity to MPs exposure. Herein, we investigated the impact and mechanism of PS-MPs on dextran sodium sulfate (DSS)-induced colitis. The results demonstrated that gavage with PS-MPs alone caused minimal effects on the intestinal barrier and liver status of mice. For mice with colitis, additional PS-MPs exposure caused a shorter colon length, aggravated histopathological damage and inflammation, reduced mucus secretion, and increased the colon permeability. Furthermore, PS-MPs exposure also increased the risk of secondary liver injury associated with inflammatory cell infiltration. These findings provide more histopathological evidence and suggest a need for more research on the health risk of MPs for sensitive individuals.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Inflamação/induzido quimicamente , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/patologia , Camundongos , Microplásticos/toxicidade , Plásticos/toxicidade , Poliestirenos/toxicidadeRESUMO
Infected wound healing is a complex and dynamic process affecting millions of people. Since wound healing contains multiple stages, it requires staged management to realize the early inhibition of infection and the subsequent promotion of wound healing. A key point is to design a biphasic release system with antibacterial agents and growth factors to promote wound regeneration. As a safe, efficient and painless transdermal drug delivery method, microneedles (MNs) have attracted widespread attention. Herein, we present dissolving MNs with the biphasic release of an antibacterial agent and a growth factor to promote wound healing. bFGF was first encapsulated in PLGA microspheres (bFGF@PLGA) and then co-loaded with free ofloxacin onto polyvinylpyrrolidone MNs. Owing to the fast dissolution of the substrate, ofloxacin was quickly released to rapidly inhibit infection, while the PLGA microspheres were left in the wound. Due to the slow degradation of PLGA, bFGF encapsulated in the PLGA microspheres was slowly released to further promote wound healing. In vivo studies demonstrated that the MNs with the biphasic release of antibacterial agent and growth factor exhibited a superior capability to promote wound healing. This biphasic release system combined with microneedles has a bright future in wound healing.