RESUMO
Low-dimensional semimetalsemiconductor (Sm-S) van der Waals (vdW) heterostructures have shown their potentials in nanoelectronics and nano-optoelectronics recently. It is an important scientific issue to study the interfacial charge transfer as well as the corresponding Fermi-level shift in Sm-S systems. Here we investigated the gate-tunable contact-induced Fermi-level shift (CIFS) behavior in a semimetal single-walled carbon nanotube (SWCNT) that formed a heterojunction with a transition-metal dichalcogenide (TMD) flake. A resistivity comparison methodology and a Fermi-level catch-up model have been developed to measure and analyze the CIFS, whose value is determined by the resistivity difference between the naked SWCNT segment and the segment in contact with the TMD. Moreover, the relative Fermi-level positions of SWCNT and two-dimensional (2D) semiconductors can be efficiently reflected by the gate-tunable resistivity difference. The work function change of the semimetal, as a result of CIFS, will naturally introduce a modified form of the SchottkyMott rule, so that a modified Schottky barrier height can be obtained for the Sm-S junction. The methodology and physical model should be useful for low-dimensional reconfigurable nanodevices based on Sm-S building blocks.
RESUMO
Low-dimensional semiconductors have shown great potential in switches for their atomically thin geometries and unique properties. It is significant to achieve new tunneling transistors by the efficient stacking methodology with low-dimensional building blocks. Here, we report a one-dimensional (1D)-two-dimensional (2D) mixed-dimensional van der Waals (vdW) heterostructure, which was efficiently fabricated by stacking an individual semiconducting carbon nanotube (CNT) and 2D MoS2. The CNT-MoS2 heterostructure shows specific reconfigurable electrical transport behaviors and can be set as a nn junction, pn diode, and band-to-band tunneling (BTBT) transistor by gate voltage. The transport properties, especially BTBT, could be attributed to the electron transfer from MoS2 to CNT through the ideal vdW interface and the 1D nature of the CNT. The progress suggests a new solution for tunneling transistors by making 1D-2D heterostructures from the rich library of low-dimensional nanomaterials. Furthermore, the reconfigurable functions and nanoscaled junction show that it is prospective to apply CNT-MoS2 heterostructures in future nanoelectronics and nano-optoelectronics.
RESUMO
Two-dimensional (2D) materials enable vertical field effect transistors (VFETs), which provide an alternative path for scaling down the channels of transistors. The challenge is the short channel effect when the thickness of the 2D channel decreases to â¼10 nm. Here, we show that a VFET with an ultrashort channel can be accomplished by employing a semimetal carbon nanotube (CNT) as a 1D van der Waals (vdW) contact. The CNT-VFETs with 5-10 nm MoS2 channels exhibit high on/off ratios exceeding 105, low subthreshold swing values of 160-120 mV/dec, and high current densities over 104 A/cm2. Such a switch even works with an â¼ 3.4 nm thick channel. The excellent comprehensive performance can be ascribed to the reduced short channel effect as the sub-2 nm CNT contact has weaker electrostatic screening to the gate, a reduced Fermi level pinning effect, and a highly tunable barrier. The VFETs with 1D vdW contacts hold great promise for ultrascaled transistors and are prospective in future nanoelectronics and nano-optoelectronics.
RESUMO
Reconfigurable logic circuits implemented by two-dimensional (2D) ambipolar semiconductors provide a prospective solution for the post-Moore era. It is still a challenge for ambipolar nanomaterials to realize reconfigurable polarity control and rectification with a simplified device structure. Here, an air-gap barristor based on an asymmetric stacking sequence of the electrode contacts was developed to resolve these issues. For the 2D ambipolar channel of WSe2, the barristor can not only be reconfigured as an n- or p-type unipolar transistor but also work as a switchable diode. The air gap around the bottom electrode dominates the reconfigurable behaviors by widening the Schottky barrier here, thus blocking the injection of both electrons and holes. The electrical performances can be improved by optimizing the electrode materials, which achieve an on/off ratio of 104 for the transistor and a rectifying ratio of 105 for the diode. A complementary inverter and a switchable AND/OR logic gate were constructed by using the air-gap barristors as building blocks. This work provides an efficient approach with great potential for low-dimensional reconfigurable electronics.
RESUMO
Two-dimensional (2D) semiconductors are promising in channel length scaling of field-effect transistors (FETs) due to their excellent gate electrostatics. However, scaling of their contact length still remains a significant challenge because of the sharply raised contact resistance and the deteriorated metal conductivity at nanoscale. Here, we construct a 1D semimetal-2D semiconductor contact by employing single-walled carbon nanotube electrodes, which can push the contact length into the sub-2 nm region. Such 1D-2D heterostructures exhibit smaller van der Waals gaps than the 2D-2D ones, while the Schottky barrier height can be effectively tuned via gate potential to achieve Ohmic contact. We propose a longitudinal transmission line model for analyzing the potential and current distribution of devices in short contact limit, and use it to extract the 1D-2D contact resistivity which is as low as 10-6 Ω·cm2 for the ultra-short contacts. We further demonstrate that the semimetal nanotubes with gate-tunable work function could form good contacts to various 2D semiconductors including MoS2, WS2 and WSe2. The study on 1D semimetal contact provides a basis for further miniaturization of nanoelectronics in the future.
RESUMO
Mechanically flexible optoelectronic devices and systems can enable a much broader range of applications than what their rigid counterparts can do, especially for novel bio-integrated optoelectronic systems, flexible consumer electronics and wearable sensors. Inorganic semiconductor could be a good candidate for the flexible PD when it can keep its high performance under the bending condition. Here, we demonstrate a III-V material-based flexible photodetector operating wavelength from 640 to 1700 nm with the high detectivity of 5.18 × 1011 cmâ§Hz1/2/W and fast response speed @1550 nm by using a simply top-to-down fabrication process. The optoelectrical performances are stable as the PDs are exposed to bending cycles with a radius of 15 mm up to 1000 times. Furthermore, the mechanical failure mode of the PD is also investigated, which suggests that the cracking and delamination failure mode are dominant in bending up and bending down direction, respectively. Such a flexible III-V material-based PD and design with stable and high performance could be a promising strategy for the application of the flexible broad spectrum detection.
RESUMO
Passivation of the Mg anode surface in conventional electrolytes constitutes a critical issue for practical Mg batteries. In this work, a perfluorinated tert-butoxide magnesium salt, Mg(pftb)2 , is codissolved with MgCl2 in tetrahydrofuran (THF) to form an all-magnesium salt electrolyte. Raman spectroscopy and density function theory calculation confirm that [Mg2 Cl3 ·6THF]+ [Mg(pftb)3 ]- is the main electrochemically active species of the electrolyte. The proper lowest unoccupied molecular orbital energy level of the [Mg(pftb)3 ]- anion enables in situ formation of a stable solid electrolyte interphase (SEI) on Mg anodes. A detailed analysis of the SEI reveals that its stability originates from a dual-layered organic/inorganic hybrid structure. Mg//Cu and Mg//Mg cells using the electrolyte achieve a high Coulombic efficiency of 99.7% over 3000 cycles, and low overpotentials over ultralong-cycle lives of 8100, 3000, and 1500 h at current densities of 0.5, 1.0, and 2.0 mA cm-2 , respectively. The robust SEI layer, once formed on a Mg electrode, is also shown highly effective in suppressing side-reactions in a TFSI- -containing electrolyte. A high Coulombic efficiency of 99.5% over 800 cycles is also demonstrated for a Mg//Mo6 S8 full cell, showing great promise of the SEI forming electrolyte in future Mg batteries.
RESUMO
Investigation of the mechanism of the water oxidation reaction for hematite photoanodes has been one of the most persistently pursued topics in the course of understanding photoelectrochemical water splitting by transition metal oxides. Unfortunately, existing experimental techniques often require over-simplified models and theories that assume only one reaction path. In this work, however, it is proposed that water oxidation on hematite can proceed via mixed reaction paths according to spectroelectrochemical results without a priori assumptions. The true absorption signals of surface states responsible for water oxidation are isolated from subsidiary signals for undoped and Ti-doped hematite and contrasted with those of inactive species. The evolution of absorption signals as a function of applied potential and illumination intensity highlights the non-negligible contribution of direct hole transfer, especially for highly doped hematite.
RESUMO
Mixed-dimensional van der Waals (vdW) heterostructures composed of one-dimensional (1D) and two-dimensional (2D) materials have exhibited great potential in nanoelectronics and nano-optoelectronics. In this study, we present a vertical point p-n junction (VPpnJ), in which a vertical stacked molybdenum disulfide/tungsten diselenide p-n junction is sandwiched between two cross-stacked metallic carbon nanotubes (CNTs). The device can be transformed from p-n junction to n-n junction via gate modulation. As a photodetector, the VPpnJ device can work in three different modes by setting the appropriate gating voltages. The photosensitive areas are localized around the top CNT, bottom CNT, and the cross point at VG = -10 V, 10 V, and â¼0 V, respectively. In the p-n regime at the negative gate voltage, the VPpnJ device showed an obvious photovoltaic effect. The external quantum efficiency of the VPpnJ can reach 42.7%. The electrical control of the electronic and optoelectronic characteristics can be mainly attributed to the gate-tunable interfacial built-in electric fields in the heterostructures. The progress also reveals the functional diversity of such 1D/2D mixed-dimensional heterostructures, which will be prospects for future nanoelectronics and nano-optoelectronics.