RESUMO
During the chlor-alkali process, in operation since the nineteenth century, electrolysis of sodium chloride solutions generates chlorine and sodium hydroxide that are both important for chemical manufacturing1-4. As the process is very energy intensive, with 4% of globally produced electricity (about 150 TWh) going to the chlor-alkali industry5-8, even modest efficiency improvements can deliver substantial cost and energy savings. A particular focus in this regard is the demanding chlorine evolution reaction, for which the state-of-the-art electrocatalyst is still the dimensionally stable anode developed decades ago9-11. New catalysts for the chlorine evolution reaction have been reported12,13, but they still mainly consist of noble metal14-18. Here we show that an organocatalyst with an amide functional group enables the chlorine evolution reaction; and that in the presence of CO2, it achieves a current density of 10 kA m-2 and a selectivity of 99.6% at an overpotential of only 89 mV and thus rivals the dimensionally stable anode. We find that reversible binding of CO2 to the amide nitrogen facilitates formation of a radical species that plays a critical role in Cl2 generation, and that might also prove useful in the context of Cl- batteries and organic synthesis19-21. Although organocatalysts are typically not considered promising for demanding electrochemical applications, this work demonstrates their broader potential and the opportunities they offer for developing industrially relevant new processes and exploring new electrochemical mechanisms.
RESUMO
Transition metals and related compounds are known to exhibit high catalytic activities in various electrochemical reactions thanks to their intriguing electronic structures. What is lesser known is their unique role in storing and transferring electrons in battery electrodes which undergo additional solid-state conversion reactions and exhibit substantially large extra capacities. Here, a full dynamic picture depicting the generation and evolution of electrochemical interfaces in the presence of metallic nanoparticles is revealed in a model CoCO3/Li battery via an in situ magnetometry technique. Beyond the conventional reduction to a Li2CO3/Co mixture under battery operation, further decomposition of Li2CO3 is realized by releasing interfacially stored electrons from its adjacent Co nanoparticles, whose subtle variation in the electronic structure during this charge transfer process has been monitored in real time. The findings in this work may not only inspire future development of advanced electrode materials for next-generation energy storage devices but also open up opportunities in achieving in situ monitoring of important electrocatalytic processes in many energy conversion and storage systems.
RESUMO
Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.
Assuntos
Neurônios Colinérgicos , Giro Denteado , Células-Tronco Neurais , Neurogênese , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Giro Denteado/metabolismo , Giro Denteado/citologia , Neurogênese/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Camundongos , Proliferação de Células , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/fisiologia , Células-Tronco Adultas/citologia , Morfogênese , Nicho de Células-Tronco/fisiologia , MasculinoRESUMO
Novel components in the noncanonical Hippo pathway that mediate the growth, metastasis, and drug resistance of breast cancer (BC) cells need to be identified. Here, we showed that expression of SAM and SH3 domain-containing protein 1 (SASH1) is negatively correlated with expression of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) in a subpopulation of patients with luminal-subtype BC. Downregulated SASH1 and upregulated MAP4K4 synergistically regulated the proliferation, migration, and invasion of luminal-subtype BC cells. The expression of LATS2, SASH1, and YAP1 and the phosphorylation of YAP1 were negatively regulated by MAP4K4, and LATS2 then phosphorylated SASH1 to form a novel MAP4K4-LATS2-SASH1-YAP1 cascade. Dephosphorylation of Yes1 associated transcriptional regulator (YAP1), YAP1/TAZ nuclear translocation, and downstream transcriptional regulation of YAP1 were promoted by the combined effects of ectopic MAP4K4 expression and SASH1 silencing. Targeted inhibition of MAP4K4 blocked proliferation, cell migration, and ER signaling both in vitro and in vivo. Our findings reveal a novel MAP4K4-LATS2-SASH1-YAP1 phosphorylation cascade, a noncanonical Hippo pathway that mediates ER signaling, tumorigenesis, and metastasis in breast cancer. Targeted intervention with this noncanonical Hippo pathway may constitute a novel alternative therapeutic approach for endocrine-resistant BC.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Camundongos , Transdução de Sinais , Metástase Neoplásica , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Fosforilação , Camundongos Nus , Carcinogênese/genética , Carcinogênese/metabolismoRESUMO
Diversity, a hallmark of G protein-coupled receptor (GPCR) signaling, partly stems from alternative splicing of a single gene generating more than one isoform for a receptor. Additionally, receptor responses to ligands can be attenuated by desensitization upon prolonged or repeated ligand exposure. Both phenomena have been demonstrated and exemplified by the deuterostome tachykinin signaling system, although the role of phosphorylation in desensitization remains a subject of debate. Here, we describe the signaling system for tachykinin-related peptides (TKRPs) in a protostome, mollusk Aplysia. We cloned the Aplysia TKRP precursor, which encodes three TKRPs (apTKRP-1, apTKRP-2a, and apTKRP-2b) containing the FXGXR-amide motif. In situ hybridization and immunohistochemistry showed predominant expression of TKRP mRNA and peptide in the cerebral ganglia. TKRPs and their posttranslational modifications were observed in extracts of central nervous system ganglia using mass spectrometry. We identified two Aplysia TKRP receptors (apTKRPRs), named apTKRPR-A and apTKRPR-B. These receptors are two isoforms generated through alternative splicing of the same gene and differ only in their intracellular C termini. Structure-activity relationship analysis of apTKRP-2b revealed that both C-terminal amidation and conserved residues of the ligand are critical for receptor activation. C-terminal truncates and mutants of apTKRPRs suggested that there is a C-terminal phosphorylation-independent desensitization for both receptors. Moreover, apTKRPR-B also exhibits phosphorylation-dependent desensitization through the phosphorylation of C-terminal Ser/Thr residues. This comprehensive characterization of the Aplysia TKRP signaling system underscores the evolutionary conservation of the TKRP and TK signaling systems, while highlighting the intricacies of receptor regulation through alternative splicing and differential desensitization mechanisms.
Assuntos
Aplysia , Isoformas de Proteínas , Animais , Aplysia/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Receptores de Taquicininas/metabolismo , Receptores de Taquicininas/genética , Taquicininas/metabolismo , Taquicininas/genética , Sequência de Aminoácidos , Transdução de Sinais , Processamento Alternativo , HumanosRESUMO
Chemoselective hydrogenation of quinoline and its derivatives is a significant strategy to achieve the corresponding 1,2,3,4-tetrahydroquinolines (py-THQ) for various potential applications. Here, we precisely constructed a titanium carbide supported atomically dispersed Pd catalyst (PdSA+NC/TiC) for quinoline hydrogenation, delivering above 99% py-THQ selectivity at complete conversion with an outstanding turnover frequency (TOF) of 463 h-1. AC-HAADF-STEM and XAFS demonstrate that the atomic dispersion of Pd includes Pd-Ti2C2 single atoms and Pd clusters with atomic-layer thickness. Theoretical calculation and experimental results revealed that H2 dissociation and subsequent hydrogenation rates were greatly promoted over Pd clusters. Although the adsorption of quinolines and intermediates are easier on Pd clusters than on Pd single atoms, the desorption of py-THQ is more favored over Pd single atoms than over Pd clusters. The desorption step may be the main reason for 5,6,7,8-tetrahydroquinoline (bz-THQ) and decahydroquinoline (DHQ) formation. Thus, a low reaction activity and py-THQ selectivity were received over PdSA/TiC and PdNP/TiC, respectively.
RESUMO
Herein, we propose a platinization strategy for the preparation of Pt/X catalysts with low Pt content on substrates possessing electron-rich sites (Pt/X: X = Co3O4, NiO, CeO2, Covalent Organic Framework (COF), etc.). In examples with inorganic and organic substrates, respectively, Pt/Co3O4 possesses remarkable catalytic ability toward HER, achieving a current density at an overpotential of 500 mV that is 3.22 times higher than that of commercial Pt/C. It was also confirmed by using operando Raman spectroscopy that the enhancement of catalytic activity was achieved after platinization of the COF, with a reduction of overpotential from 231 to 23 mV at 10 mA cm-2. Density functional theory (DFT) reveals that the improved catalytic activity of Pt/Co3O4 and Pt/COF originated from the re-modulation of Ptδ+ on the electronic structure and the synergistic effect of the interfacial Ptδ+/electron-rich sites. This work provides a rapid synthesis strategy for the synthesis of low-content Pt catalysts for electrocatalytic hydrogen production.
RESUMO
The precise design of catalytic metal centers with multiple chemical states to facilitate sophisticated reactions involving multimolecular activation is highly desirable but challenging. Herein, we report an ordered macroporous catalyst with heterovalent metal pair (HMP) sites comprising CuII-CuI on the basis of a microporous metal-organic framework (MOF) system. This macroporous HMP catalyst with proximity heterovalent dual copper sites, whose distance is controlled to â¼2.6 Å, on macropore surface exhibits a co-activation behavior of ethanol at CuII and alkyne at CuI, and avoids microporous restriction, thereby promoting additive-free alkyne hydroboration reaction. The desired yield enhances dramatically compared with the pristine MOF and ordered macroporous MOF both with solely isovalent CuII-CuII sites. Density functional theory calculations reveal that the Cu-HMP sites can stabilize the Bpin-CuII-CuI-alkyne intermediate and facilitate C-B bond formation, resulting in a smooth alkyne hydroboration process. This work provides new perspectives to design multimolecular activation catalysts for sophisticated matter transformations.
RESUMO
Palladium (Pd)-based single-atom catalysts (SACs) have shown outstanding selectivity for semihydrogenation of alkynes, but most Pd single sites coordinated with highly electronegative atoms (such as N, O, and S) of supports will result in a decrease in the electron density of Pd sites, thereby weakening the adsorption of reactants and reducing catalytic performance. Constructing a rich outer-shell electron environment of Pd single-atom sites by changing the coordination structure offers a novel opportunity to enhance the catalytic efficiency with excellent alkene selectivity. Therefore, in this work, we first propose the in situ preparation of isolated Pd sites encapsulated within Al/Si-rich ZSM-5 structure using the one-pot seed-assisted growth method. Pd1@ZSM-5 features Pd-O-Al/Si bonds, which can boost the domination of d-electron near the Fermi level, thereby promoting the adsorption of substrates on Pd sites and reducing the energy barrier for the semihydrogenation of alkynes. In semihydrogenation of phenylacetylene, Pd1@ZSM-5 catalyst performs the highest turnover frequency (TOF) value of 33582 molCâC/molPd/h with 96% selectivity of styrene among the reported heterogeneous catalysts and nearly 17-fold higher than that of the commercial Lindlar catalyst (1992 molCâC/molPd/h). This remarkable catalytic performance can be retained even after 6 cycles of usage. Particularly, the zeolitic confinement structure of Pd1@ZSM-5 enables precise shape-selective catalysis for alkyne reactants with a size less than 4.3 Å.
RESUMO
The direct pyrolysis of metal-zeolite imidazolate frameworks (M-ZIFs) has been widely recognized as the predominant approach for synthesizing atomically dispersed metal-nitrogen-carbon single-atom catalysts (M/NC-SACs), which have exhibited exceptional activity and selectivity in the semihydrogenation of acetylene. However, due to weak adsorption of reactants on the single site and restricted molecular diffusion, the semihydrogenation of large organic molecules (e.g., phenylacetylene) was greatly limited for M/NC-SACs. In this work, a dual single-atom catalyst (h-Pd-Mn/NC) with hollow mesopores was designed and prepared using a general host-guest strategy. Taking the semihydrogenation of phenylacetylene as an example, this catalyst exhibited ultrahigh activity and selectivity, which achieved a turnover frequency of 218 molCâCmolPd-1 min-1, 16-fold higher than that of the commercial Lindlar catalyst. The catalyst maintained high activity and selectivity even after 5 cycles of usage. The superior activity of h-Pd-Mn/NC was attributed to the 4.0 nm mesopore interface of the catalyst, which enhanced the diffusion of macromolecular reactants and products. Particularly, the introduction of atomically dispersed Mn with weak electronegativity in h-Pd-Mn/NC could drive the electron transfer from Mn to adjacent Pd sites and regulate the electronic structure of Pd sites. Meanwhile, the strong electronic coupling in Pd-Mn pairs enhanced the d-electron domination near the Fermi level and promoted the adsorption of phenylacetylene and H2 on Pd active sites, thereby reducing the energy barrier for the semihydrogenation of phenylacetylene.
RESUMO
Transition-metal-catalyzed carbene insertion reactions of a nitrogen-hydrogen bond have emerged as robust and versatile methods for the construction of C-N bonds. While significant progress of homogeneous catalytic metal carbene N-H insertions has been achieved, the control of chemoselectivity in the field remains challenging due to the high electrophilicity of the metal carbene intermediates. Herein, we present an efficient strategy for the synthesis of a rhodium single-atom-site catalyst (Rh-SA) that incorporates a Rh atom surrounded by three nitrogen atoms and one phosphorus atom doped in a carbon support. This Rh-SA catalyst, with a catalyst loading of only 0.15 mol %, exhibited exceptional catalytic performance for heterogeneous carbene insertion with various anilines and heteroaryl amines in combination with diazo esters. Importantly, the heterogeneous catalyst selectively transformed aniline derivatives bearing multiple nucleophilic moieties into single N-H insertion isomers, while the popular homogeneous Rh2(OAc)4 catalyst produced a mixture of overfunctionalized side products. Additionally, similar selectivities for N-H bond insertion with a set of stereoelectronically diverse diazo esters were obtained, highlighting the general applicability of this heterogeneous catalysis approach. On the basis of density functional theory calculations, the observed selectivity of the Rh-SA catalyst was attributed to the insertion barriers and the accelerated proton transfer assisted by the phosphorus atom in the support. Overall, this investigation of heterogeneous metal-catalyzed carbene insertion underscores the potential of single-atom-site catalysis as a powerful and complementary tool in organic synthesis.
RESUMO
Despite the extensive development of non-noble metals for the N-alkylation of amines with alcohols, the exploitation of catalysts with high selectivity, activity, and stability still faces challenges. The controllable modification of single-atom sites through asymmetric coordination with a second heteroatom offers new opportunities for enhancing the intrinsic activity of transition metal single-atom catalysts. Here, we prepared the asymmetric N/P hybrid coordination of single-atom Co1-N3P1 by absorbing the Co-P complex on ZIF-8 using a concise impregnation-pyrolysis process. The catalyst exhibits ultrahigh activity and selectivity in the N-alkylation of aniline and benzyl alcohol, achieving a turnover number (TON) value of 3480 and a turnover frequency (TOF) value of 174-h. The TON value is 1 order of magnitude higher than the reported catalysts and even 37-fold higher than that of the homogeneous catalyst CoCl2(PPh3)2. Furthermore, the catalyst maintains its high activity and selectivity even after 6 cycles of usage. Controlling experiments and isotope labeling experiments confirm that in the asymmetric Co1-N3P1 system, the N-alkylation of aniline with benzyl alcohol proceeds via a transfer hydrogenation mechanism involving the monohydride route. Theoretical calculations prove that the superior activity of asymmetric Co1-N3P1 is attributed to the higher d-band energy level of Co sites, which leads to a more stable four-membered ring transition state and a lower reaction energy barrier compared to symmetrical Co1-N4.
RESUMO
Lower olefins are widely used in the chemical industry as basic carbon-based feedstocks. Here, we report the catalytic system featuring isolated single-atom sites of iridium (Ir1) that can function within the entire temperature range of 300-600 °C and transform alkanes with conversions close to thermodynamics-dictated levels. The high turnover frequency values of the Ir1 system are comparable to those of homogeneous catalytic reactions. Experimental data and theoretical calculations both indicate that Ir1 is the primary catalytic site, while the coordinating C and N atoms help to enhance the activity and stability, respectively; all three kinds of elements cooperatively contribute to the high performance of this novel active site. We have further immobilized this catalyst on particulate Al2O3, and we found that the resulting composite system under mimicked industrial conditions could still give high catalytic performances; in addition, we have also developed and established a new scheme of periodical in situ regeneration specifically for this composite particulate catalyst.
RESUMO
BACKGROUND: Growing evidence shows that ultra-processed food consumption is associated with the risk of cancer. However, prospective evidence is limited on renal cell carcinoma (RCC) incidence and mortality. In this study, we aimed to examine the association of ultra-processed food consumption and RCC incidence and mortality in a large cohort of US adults. METHODS: A population-based cohort of 101,688 participants were included from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Ultra-processed food items were confirmed by using the NOVA food classification system. The consumption of ultra-processed food was expressed as a percentage of total food intake (g/day). Prospective associations were calculated using Cox regression. Restricted cubic spline regression was used to assess nonlinearity. Subgroup analyses were performed to investigate the potential effect modifiers on the incidence and mortality of RCC. RESULTS: A total of 410 participants developed RCC during a total of 899,731 person-years of follow-up (median 9.41 years) and 230 RCC deaths during 1,533,930 person-years of follow-up (median 16.85 years). In the fully adjusted model, participants in the highest compared with the lowest quintiles of ultra-processed food consumption had a higher risk of RCC (HR quartile 4 vs 1:1.42; 95% CI: 1.06-1.91; Ptrend = 0.004) and mortality (HR quartile 4 vs. quartile 1: 1.64; 95% CI: 1.10-2.43; Ptrend = 0.027). Linear dose-response associations with RCC incidence and mortality were observed for ultra-processed food consumption (all Pnonlinearity > 0.05). The reliability of these results was supported by sensitivity and subgroup analyses. CONCLUSION: In conclusion, higher consumption of ultra-processed food is associated with an increased risk of RCC incidence and mortality. Limiting ultra-processed food consumption might be a primary prevention method of RCC.
Assuntos
Carcinoma de Células Renais , Fast Foods , Neoplasias Renais , Humanos , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/mortalidade , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Incidência , Idoso , Neoplasias Renais/epidemiologia , Neoplasias Renais/mortalidade , Fast Foods/efeitos adversos , Estados Unidos/epidemiologia , Alimento ProcessadoRESUMO
γ-valerolactone (GVL) is a key value-added chemical catalytically produced from levulinic acid (LA), an important biomass derivative platform chemical. Here an ultra-efficient 3D Ru catalyst generated by in situ reduction of RuZnOx nanoboxes is reported; the catalyst features a well-defined structure of highly dispersed in situ oxide-derived Ru (IOD-Ru) clusters (≈1 nm in size) spatially confined within the 3D nanocages with rich mesopores, which guarantees a maximized atom utilization with a high exposure of Ru active sites as well as a 3D accessibility for substrate molecules. The IOD-Ru exhibits ultrahigh performance for the hydrogenation of LA into GVL with a record-breaking turnover frequency (TOF) up to 59400 h-1 , 14 times higher than that of the ex situ reduction of RuZnOx nanoboxes catalyst. Structural characterizations and theoretical calculations collectively indicate that the defect-rich and coordination-unsaturated IOD-Ru sites can boost the activation of the carbonyl group in LA with a significantly lowered energy barrier of hydrogenation.
RESUMO
All-solid-state fluoride ion batteries (ASSFIBs) show remarkable potential as energy storage devices due to their low cost, superior safety, and high energy density. However, the poor ionic conductivity of F- conductor, large volume expansion, and the lack of a suitable anode inhibit their development. In this work, PbSnF4 solid electrolytes in different phases (ß- and γ-PbSnF4) are successfully synthesized and characterized. The ASSFIBs composed of ß-PbSnF4 electrolytes, a BiF3 cathode, and micrometer/nanometer size (µ-/n-) Sn anodes, exhibit substantial capacities. Compared to the µ-Sn anode, the n-Sn anode with nanostructure exhibits superior battery performance in the BiF3/ß-PbSnF4/Sn battery. The optimized battery delivers a high initial discharge capacity of 181.3 mAh g-1 at 8 mA g-1 and can be reversibly cycled at 40 mA g-1 with a high discharge capacity of over 100.0 mAh g-1 after 120 cycles at room temperature. Additionally, it displays high discharge capacities over 90.0 mAh g-1 with excellent cyclability over 100 cycles under -20 °C. Detailed characterization has confirmed that reducing Sn particle size and boosting external pressure are crucial for achieving good defluorination/fluorination behaviors in the Sn anode. These findings pave the way to designing ASSFIBs with high capacities and superior cyclability under different operating temperatures.
RESUMO
An array of biologically interesting tri/difluoromethylated chromones and their heteroatom analogues were conveniently synthesized from the reaction of chromones and their heteroatom analogues with CF3SO2Na or HCF2SO2Na in the presence of tert-butyl hydroperoxide under mild conditions. A mechanistic pathway involving the generation of the electrophilic tri/difluoromethyl radical, followed with the radical substitution of chromones and their heteroatom analogues, was postulated.
RESUMO
KEY MESSAGE: Calcium polypeptide plays a key role during cadmium stress responses in rice, which is involved in increasing peroxidase activity, modulating pectin methylesterase activity, and regulating cell wall by reducing malondialdehyde content. Cadmium (Cd) contamination threatens agriculture and human health globally, emphasizing the need for sustainable methods to reduce cadmium toxicity in crops. Calcium polypeptide (CaP) is a highly water-soluble small molecular peptide acknowledged for its potential as an organic fertilizer in promoting plant growth. However, it is still unknown whether CaP has effects on mitigating Cd toxicity. Here, we investigated the effect of CaP application on the ability to tolerate toxic Cd in rice. We evaluated the impact of CaP on rice seedlings under varying Cd stress conditions and investigated the effect mechanism of CaP mitigating Cd toxicity by Fourier transform infrared spectroscopy (FTIR), fluorescent probe dye, immunofluorescent labeling, and biochemical analysis. We found a notable alleviation of Cd toxicity by reduced malondialdehyde content and increased peroxidase activity. In addition, our findings reveal that CaP induces structural alterations in the root cell wall by modulating pectin methylesterase activity. Altogether, our results confirm that CaP not only promoted biomass accumulation but also reduced Cd concentration in rice. This study contributes valuable insights to sustainable strategies for addressing Cd contamination in agricultural ecosystems.
Assuntos
Cádmio , Malondialdeído , Oryza , Estresse Oxidativo , Pectinas , Oryza/efeitos dos fármacos , Oryza/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pectinas/metabolismo , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Peptídeos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The sensitivity and accuracy of nanopore sensors are severely hindered by the high noise associated with solid-state nanopores. To mitigate this issue, the deposition of organic polymer materials onto silicon nitride (SiNx) membranes has been effective in obtaining low-noise measurements. Nonetheless, the fabrication of nanopores sub-10 nm on thin polymer membranes remains a significant challenge. This work proposes a method for fabricating nanopores on polymethyl methacrylate (PMMA) membrane by the local high electrical field controlled breakdown, exploring the impact of voltage and current on the breakdown of PMMA membranes and discussing the mechanism underlying the breakdown voltage and current during the formation of nanopores. By improving the electric field application method, transient high electric fields that are one-seven times higher than the breakdown electric field can be utilized to fabricate nanopores. A comparative analysis was performed on the current noise levels of nanopores in PMMA-SiNx composite membranes and SiNx nanopores with a 5 nm diameter. The results demonstrated that the fast fabrication of nanopores on PMMA-SiNx membranes exhibited reduced current noise compared to SiNx nanopores. This finding provides evidence supporting the feasibility of utilizing this technology for efficiently fabricating low-noise nanopores on polymer composite membranes.
RESUMO
Strain engineering is an attractive strategy for improving the intrinsic catalytic performance of heterogeneous catalysts. Manipulating strain on the short-range atomic scale to the local structure of the catalytic sites is still challenging. Herein, we successfully achieved atomic strain modulation on ultrathin layered vanadium oxide nanoribbons by an ingenious intercalation chemistry method. When trace sodium cations were introduced between the V2O5 layers (Na+-V2O5), the V-O bonds were stretched by the atomically strained vanadium sites, redistributing the local charges. The Na+-V2O5 demonstrated excellent photooxidation performance, which was approximately 12 and 14 times higher than that of pristine V2O5 and VO2, respectively. Complementary spectroscopy analysis and theoretical calculations confirmed that the atomically strained Na+-V2O5 had a high surficial charge density, improving the activation of oxygen molecules and contributing to the excellent photocatalytic property. This work provides a new approach for the rational design of strain-equipped catalysts for selective photooxidation reactions.