Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 100(8): 3554-3559, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32124449

RESUMO

BACKGROUND: Tea (Camellia sinensis (L.) O. Kuntze) is a hyper-accumulator of fluoride (F). To understand F uptake and distribution in living plants, we visually evaluated the real-time transport of F absorbed by roots and leaves using a positron-emitting (18 F) fluoride tracer and a positron-emitting tracer imaging system. RESULTS: F arrived at an aerial plant part about 1.5 h after absorption by roots, suggesting that tea roots had a retention effect on F, and then was transported upward mainly via the xylem and little via the phloem along the tea stem, but no F was observed in the leaves within the initial 8 h. F absorbed via a cut petiole (leaf 4) was mainly transported downward along the stem within the initial 2 h. Although F was first detected in the top and ipsilateral leaves, it was not detected in tea roots by the end of the monitoring. During the monitoring time, F principally accumulated in the node. CONCLUSION: F uptake by the petiole of excised leaf and root system was realized in different ways. The nodes indicated that they may play pivotal roles in the transport of F in tea plants. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/metabolismo , Fluoretos/metabolismo , Transporte Biológico , Camellia sinensis/química , Fluoretos/análise , Floema/química , Floema/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Xilema/química , Xilema/metabolismo
2.
Plant Biotechnol J ; 17(10): 1938-1953, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30913342

RESUMO

Tea is the world's widely consumed nonalcohol beverage with essential economic and health benefits. Confronted with the increasing large-scale omics-data set particularly the genome sequence released in tea plant, the construction of a comprehensive knowledgebase is urgently needed to facilitate the utilization of these data sets towards molecular breeding. We hereby present the first integrative and specially designed web-accessible database, Tea Plant Information Archive (TPIA; http://tpia.teaplant.org). The current release of TPIA employs the comprehensively annotated tea plant genome as framework and incorporates with abundant well-organized transcriptomes, gene expressions (across species, tissues and stresses), orthologs and characteristic metabolites determining tea quality. It also hosts massive transcription factors, polymorphic simple sequence repeats, single nucleotide polymorphisms, correlations, manually curated functional genes and globally collected germplasm information. A variety of versatile analytic tools (e.g. JBrowse, blast, enrichment analysis, etc.) are established helping users to perform further comparative, evolutionary and functional analysis. We show a case application of TPIA that provides novel and interesting insights into the phytochemical content variation of section Thea of genus Camellia under a well-resolved phylogenetic framework. The constructed knowledgebase of tea plant will serve as a central gateway for global tea community to better understand the tea plant biology that largely benefits the whole tea industry.


Assuntos
Camellia sinensis/genética , Biologia Computacional , Genoma de Planta , Genômica , Filogenia , Chá
3.
Plant Cell Rep ; 31(1): 27-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21850593

RESUMO

C-repeat/dehydration-responsive element binding factors (CBFs) can induce the expression of a suite of cold-responsive genes to increase plant cold tolerance, and inducer of CBF expression 1 (ICE1) is a major activator for CBF. In the present study, we isolated the full-length cDNAs of ICE1 and CBF from Camellia sinensis, designated as CsICE1 and CsCBF1, respectively. The deduced protein CsICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE1-like proteins. CsCBF1 contains all conserved domains of CBFs in other plant species and can specifically bind to the C-repeat/dehydration-responsive element (CRT/DRE) as confirmed by electrophoretic mobility shift assay. The transcription of CsICE1 had no apparent alteration after chilling treatment (4°C). CsCBF1 expression was not detected in normal temperature (20°C) but was induced immediately and significantly by low temperature (4°C). Our results suggest that ICE1-CBF cold-response pathway is conserved in tea plants. CsICE1 and CsCBF1, two components of this pathway, play roles in cold responses in tea plants.


Assuntos
Camellia sinensis/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Aclimatação/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Temperatura Baixa , Sequência Conservada , DNA Complementar , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Sequências Hélice-Alça-Hélice/genética , Filogenia , Elementos de Resposta
4.
BMC Genomics ; 12: 131, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21356090

RESUMO

BACKGROUND: Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. RESULTS: Using high-throughput Illumina RNA-seq, the transcriptome from poly (A)+ RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled into 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real time PCR (qRT-PCR). CONCLUSIONS: An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis.


Assuntos
Camellia sinensis/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Chá/química , Camellia sinensis/metabolismo , Análise por Conglomerados , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genoma de Planta , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos
5.
Food Chem ; 272: 313-322, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309549

RESUMO

Withering is an indispensable process for improving flavors in green, black and white teas during their manufacturing. The effects of the withering process on the formation of tea flavors were investigated using transcriptome and metabolite profiling in withered tea leaves. A total of 3268, 23,282 and 25,185 differentially expressed genes (DEGs) were identified at 3 h (68%, water content), 12 h (61%) and 24 h (48%) of the withering process, respectively. The DEGs, involved in flavonoid biosynthesis were significantly downregulated, which could be correlated with the reduction of catechins. Enhancement of terpenoids and alpha-linolenic acid metabolism could trigger an increase in the total content and number of volatiles. The increase in free amino acid-content could be related to 261 DEGs. Our study suggests that dehydration stress during withering induced significant changes in the gene transcription and content of the tea flavor compounds, which promoted the special flavors in various teas.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Manipulação de Alimentos , Perfilação da Expressão Gênica , Metabolômica , Paladar , Catequina/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Terpenos/metabolismo
6.
J Agric Food Chem ; 64(8): 1770-6, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26886573

RESUMO

Hydroperoxide lyase (HPL, E.C. 4.1.2.) is the major enzyme in the biosynthesis of natural volatile aldehydes and alcohols in plants, however, little was known about HPL in tea plants (Camellia sinensis). A unique cDNA fragment was isolated by suppressive subtractive hybridization (SSH) from a tea plant subjected to herbivory by tea geometrid Ectropis obliqua. This full length cDNA acquired by RACE was 1476 bp and encoded 491 amino acids. DNA and protein BLAST searches showed high homology to HPL sequences from other plants. The His-tag expression vector pET-32a(+)/CsHPL was constructed and transferred into Escherichia coli Rosetta (DE3). The expression product of recombinant CsHPL in E. coli was about 60 kDa. The enzyme activity of CsHPL was 0.20 µmol·min(-1)·mg(-1). Quantitative RT-PCR analysis indicated CsHPL was strongly up-regulated in tea plants after Ectropis obliqua attack, suggesting that it may be an important candidate for defense against insects in tea plants.


Assuntos
Aldeído Liases/genética , Camellia sinensis/enzimologia , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Folhas de Planta/enzimologia , Proteínas de Plantas/genética , Aldeído Liases/química , Aldeído Liases/metabolismo , Sequência de Aminoácidos , Animais , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/parasitologia , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mariposas/fisiologia , Folhas de Planta/química , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
7.
PLoS One ; 11(3): e0151424, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26962860

RESUMO

Tea is one of the most popular beverages across the world and is made exclusively from cultivars of Camellia sinensis. Many wild relatives of the genus Camellia that are closely related to C. sinensis are native to Southwest China. In this study, we first identified the distinct genetic divergence between C. sinensis and its wild relatives and provided a glimpse into the artificial selection of tea plants at a genome-wide level by analyzing 15,444 genomic SNPs that were identified from 18 cultivated and wild tea accessions using a high-throughput genome-wide restriction site-associated DNA sequencing (RAD-Seq) approach. Six distinct clusters were detected by phylogeny inferrence and principal component and genetic structural analyses, and these clusters corresponded to six Camellia species/varieties. Genetic divergence apparently indicated that C. taliensis var. bangwei is a semi-wild or transient landrace occupying a phylogenetic position between those wild and cultivated tea plants. Cultivated accessions exhibited greater heterozygosity than wild accessions, with the exception of C. taliensis var. bangwei. Thirteen genes with non-synonymous SNPs exhibited strong selective signals that were suggestive of putative artificial selective footprints for tea plants during domestication. The genome-wide SNPs provide a fundamental data resource for assessing genetic relationships, characterizing complex traits, comparing heterozygosity and analyzing putatitve artificial selection in tea plants.


Assuntos
Camellia sinensis/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único
8.
J Plant Physiol ; 170(3): 272-82, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23228629

RESUMO

Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) is considered to be a key enzyme in lignin biosynthesis, but little was known about CADs in tea plants (Camellia sinensis). A full-length cDNA sequence (CsCAD2) was isolated by suppressive subtractive hybridization (SSH) in Ectropis oblique feeding-induced tea plants, and another two full-length cDNA sequences (CsCAD1 and CsCAD3) were obtained from a transcriptome obtained by deep sequencing. However, they showed only 20-54% identities. Phylogenetic analysis revealed that they belonged to three different families. DNA gel blotting analysis revealed that two copies of CsCAD1 and CsCAD2 genes existed in tea genome, but CsCAD3 likely had only one copy. Recombinant proteins of these CsCADs were produced in Escherichia coli. The activity of purified recombinant CsCAD2 protein was up to 0.43 µmol min(-1) mg(-1). However, the other two recombinant proteins had lower activities, probably due to incomplete refolding. qRT-PCR analysis indicated that while CsCAD3 was strongly up-regulated in tea plants after E. oblique attack and mechanical damage, CsCAD1 and CsCAD2 showed only moderate or no changes in transcript levels. Treatment of defence-related hormones methyl jasmonate (MeJA) and salicylic acid (SA) elevated the expression of CsCAD1 and CsCAD2, but decreased the transcript abundance of CsCAD3. The transcript levels of CsCAD2 did not change after applying abscisic acid (ABA), whereas CsCAD1 and CsCAD3 were induced. These results suggested that these three CsCAD genes in tea plants may play a role in defense against insects and pathogens and adaptation to abiotic stresses and these genes likely have divergant functions.


Assuntos
Adaptação Fisiológica/genética , Oxirredutases do Álcool/genética , Camellia sinensis/enzimologia , Camellia sinensis/genética , Folhas de Planta/enzimologia , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Animais , Camellia sinensis/parasitologia , Clonagem Molecular , Ciclopentanos/farmacologia , DNA de Plantas , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Himenópteros/fisiologia , Oxilipinas/farmacologia , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Proteínas Recombinantes/metabolismo , Ácido Salicílico/farmacologia
9.
Acta Biochim Biophys Sin (Shanghai) ; 37(6): 363-70, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15944750

RESUMO

beta-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel beta-glucosidase was purified 117-fold to homogeneity, with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50 deg;C and was stable at temperatures lower than 40 degrees C. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.


Assuntos
Camellia sinensis/enzimologia , Folhas de Planta/enzimologia , beta-Glucosidase/isolamento & purificação , Cromatografia por Troca Iônica , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Temperatura , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa