Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Ecotoxicol Environ Saf ; 265: 115511, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774542

RESUMO

Glyphosate is an herbicide extensively used worldwide that can remain in the soil. Phytoremediation to decontaminate polluted water or soil requires a plant that can accumulate the target compound. Vulpia myuros is an annual fescue that can be used as a heavy mental phytoremediation strategy. Recently, it has been used to intercrop with tea plant to prohibit the germination and growth of other weeds in tea garden. In order to know whether it can be used an decontaminating glyphosate' plant in water or soil, in this study, glyphosate degradation behavior was investigated in Vulpia myuros cultivated in a hydroponic system. The results showed that the concentration of glyphosate in the nutrient solution decreased from 43.09 µg mL-1 to 0.45 µg mL-1 in 30 days and that 99% of the glyphosate molecules were absorbed by V. myuros. The contents of glyphosate in the roots reached the maximum (224.33 mg kg-1) on day 1 and then decreased. After 3 days, the content of glyphosate in the leaves reached the highest value (215.64 mg kg-1), while it decreased to 156.26 mg kg-1 in the roots. The dissipation dynamics of glyphosate in the whole hydroponic system fits the first-order kinetic model C = 455.76e-0.21 t, with a half-life of 5.08 days. Over 30 days, 80% of the glyphosate was degraded. The contents of the glyphosate metabolite amino methyl phosphoric acid (AMPA), ranged from 0.103 mg kg-1 on day 1-0.098 mg kg-1 on day 30, not changing significantly over time. The Croot/solution, Cleaf/solution and Cleaf/root were used to express the absorption, transfer, and distribution of glyphosate in V. myuros. These results indicated that glyphosate entered into the root system through free diffusion, which was influenced by both the log Kow and the concentration of glyphosate in the nutrient solution, and that glyphosate was either easily transferred to the leaves through the transpiration stream, accumulated, or degraded. The degradation of glyphosate in V. myuros indicated that it has potential as a remediating plant for environmental restoration.


Assuntos
Festuca , Herbicidas , Poluentes do Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Festuca/metabolismo , Solo , Herbicidas/análise , Água , Chá , Glifosato
2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768228

RESUMO

Cold stress is one of the major abiotic stresses limiting tea production. The planting of cold-resistant tea cultivars is one of the most effective measures to prevent chilling injury. However, the differences in cold resistance between tea cultivars remain unclear. In the present study, we perform a transcriptomic and metabolomic profiling of Camellia sinensis var. "Shuchazao" (cold-tolerant, SCZ) and C. sinensis var. assamica "Yinghong 9" (cold-sensitive, YH9) during cold acclimation and analyze the correlation between gene expression and metabolite biosynthesis. Our results show that there were 51 differentially accumulated metabolites only up-regulated in SCZ in cold-acclimation (CA) and de-acclimation (DA) stages, of which amino acids accounted for 18%. The accumulation of L-arginine and lysine in SCZ in the CA stage was higher than that in YH9. A comparative transcriptomic analysis showed an enrichment of the amino acid biosynthesis pathway in SCZ in the CA stage, especially "arginine biosynthesis" pathways. In combining transcriptomic and metabolomic analyses, it was found that genes and metabolites associated with amino acid biosynthesis were significantly enriched in the CA stage of SCZ compared to CA stage of YH9. Under cold stress, arginine may improve the cold resistance of tea plants by activating the polyamine synthesis pathway and CBF (C-repeat-binding factor)-COR (cold-regulated genes) regulation pathway. Our results show that amino acid biosynthesis may play a positive regulatory role in the cold resistance of tea plants and assist in understanding the cold resistance mechanism differences among tea varieties.


Assuntos
Camellia sinensis , Transcriptoma , Perfilação da Expressão Gênica , Camellia sinensis/metabolismo , Chá/genética , Chá/metabolismo , Aminoácidos/metabolismo , Arginina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant J ; 106(5): 1312-1327, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33730390

RESUMO

The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.


Assuntos
Camellia sinensis/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Evolução Molecular , Genes Duplicados/genética , Genoma de Planta/genética , Camellia sinensis/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Tamanho do Genoma , Estresse Fisiológico
4.
Proc Natl Acad Sci U S A ; 115(18): E4151-E4158, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678829

RESUMO

Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties.


Assuntos
Camellia sinensis/genética , Evolução Molecular , Duplicação Gênica , Genoma de Planta , Chá , Camellia sinensis/metabolismo
5.
BMC Genomics ; 21(1): 65, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959105

RESUMO

BACKGROUND: Alternative splicing (AS) may generate multiple mRNA splicing isoforms from a single mRNA precursor using different splicing sites, leading to enhanced diversity of transcripts and proteins. AS has been implicated in cold acclimation by affecting gene expression in various ways, yet little information is known about how AS influences cold responses in tea plant (Camellia sinensis). RESULTS: In this study, the AS transcriptional landscape was characterized in the tea plant genome using high-throughput RNA-seq during cold acclimation. We found that more than 41% (14,103) of genes underwent AS events. We summarize the possible existence of 11 types of AS events, including the four common types of intron retention (IR), exon skipping (ES), alternative 5' splice site (A5SS), and alternative 3' splice site (A3SS); of these, IR was the major type in all samples. The number of AS events increased rapidly during cold treatment, but decreased significantly following de-acclimation (DA). It is notable that the number of differential AS genes gradually increased during cold acclimation, and these genes were enriched in pathways relating to oxidoreductase activity and sugar metabolism during acclimation and de-acclimation. Remarkably, the AS isoforms of bHLH transcription factors showed higher expression levels than their full-length ones during cold acclimation. Interestingly, the expression pattern of some AS transcripts of raffinose and sucrose synthase genes were significantly correlated with sugar contents. CONCLUSION: Our findings demonstrated that changes in AS numbers and transcript expression may contribute to rapid changes in gene expression and metabolite profile during cold acclimation, suggesting that AS events play an important regulatory role in response to cold acclimation in tea plant.


Assuntos
Aclimatação/genética , Processamento Alternativo , Camellia sinensis/genética , Temperatura Baixa , Camellia sinensis/metabolismo , Genes de Plantas , Oxirredutases/metabolismo , RNA-Seq , Açúcares/metabolismo
6.
J Sci Food Agric ; 100(8): 3554-3559, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32124449

RESUMO

BACKGROUND: Tea (Camellia sinensis (L.) O. Kuntze) is a hyper-accumulator of fluoride (F). To understand F uptake and distribution in living plants, we visually evaluated the real-time transport of F absorbed by roots and leaves using a positron-emitting (18 F) fluoride tracer and a positron-emitting tracer imaging system. RESULTS: F arrived at an aerial plant part about 1.5 h after absorption by roots, suggesting that tea roots had a retention effect on F, and then was transported upward mainly via the xylem and little via the phloem along the tea stem, but no F was observed in the leaves within the initial 8 h. F absorbed via a cut petiole (leaf 4) was mainly transported downward along the stem within the initial 2 h. Although F was first detected in the top and ipsilateral leaves, it was not detected in tea roots by the end of the monitoring. During the monitoring time, F principally accumulated in the node. CONCLUSION: F uptake by the petiole of excised leaf and root system was realized in different ways. The nodes indicated that they may play pivotal roles in the transport of F in tea plants. © 2020 Society of Chemical Industry.


Assuntos
Camellia sinensis/metabolismo , Fluoretos/metabolismo , Transporte Biológico , Camellia sinensis/química , Fluoretos/análise , Floema/química , Floema/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Xilema/química , Xilema/metabolismo
7.
BMC Genomics ; 20(1): 624, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366321

RESUMO

BACKGROUND: Low temperature restricts the planting range of all crops, but cold acclimation induces adaption to cold stress in many plants. Camellia sinensis, a perennial evergreen tree that is the source of tea, is mainly grown in warm areas. Camellia sinensis var. sinensis (CSS) has greater cold tolerance than Camellia sinensis var. assamica (CSA). To gain deep insight into the molecular mechanisms underlying cold adaptation, we investigated the physiological responses and transcriptome profiles by RNA-Seq in two tea varieties, cold resistant SCZ (classified as CSS) and cold susceptible YH9 (classified as CSA), during cold acclimation. RESULTS: Under freezing stress, lower relative electrical conductivity and higher chlorophyll fluorescence (Fv/Fm) values were detected in SCZ than in YH9 when subjected to freezing acclimation. During cold treatment, 6072 and 7749 DEGs were observed for SCZ and YH9, respectively. A total of 978 DEGs were common for both SCZ and YH9 during the entire cold acclimation process. DEGs were enriched in pathways of photosynthesis, hormone signal transduction, and transcriptional regulation of plant-pathogen interactions. Further analyses indicated that decreased expression of Lhca2 and higher expression of SnRK2.8 are correlated with cold tolerance in SCZ. CONCLUSIONS: Compared with CSA, CSS was significantly more resistant to freezing after cold acclimation, and this increased resistance was associated with an earlier expression of cold-induced genes. Because the greater transcriptional differentiation during cold acclimation in SCZ may contribute to its greater cold tolerance, our studies identify specific genes involved in photoinhibition, ABA signal conduction, and plant immunity that should be studied for understanding the processes involved in cold tolerance. Marker-assisted breeding focused on the allelic variation at these loci provides an avenue for the possible generation of CSA cultivars that have CSS-level cold tolerance.


Assuntos
Aclimatação/genética , Camellia sinensis/genética , Camellia sinensis/fisiologia , Temperatura Baixa , Perfilação da Expressão Gênica , Camellia sinensis/citologia , Camellia sinensis/imunologia , Fotossíntese/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética
8.
Plant Biotechnol J ; 17(10): 1938-1953, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30913342

RESUMO

Tea is the world's widely consumed nonalcohol beverage with essential economic and health benefits. Confronted with the increasing large-scale omics-data set particularly the genome sequence released in tea plant, the construction of a comprehensive knowledgebase is urgently needed to facilitate the utilization of these data sets towards molecular breeding. We hereby present the first integrative and specially designed web-accessible database, Tea Plant Information Archive (TPIA; http://tpia.teaplant.org). The current release of TPIA employs the comprehensively annotated tea plant genome as framework and incorporates with abundant well-organized transcriptomes, gene expressions (across species, tissues and stresses), orthologs and characteristic metabolites determining tea quality. It also hosts massive transcription factors, polymorphic simple sequence repeats, single nucleotide polymorphisms, correlations, manually curated functional genes and globally collected germplasm information. A variety of versatile analytic tools (e.g. JBrowse, blast, enrichment analysis, etc.) are established helping users to perform further comparative, evolutionary and functional analysis. We show a case application of TPIA that provides novel and interesting insights into the phytochemical content variation of section Thea of genus Camellia under a well-resolved phylogenetic framework. The constructed knowledgebase of tea plant will serve as a central gateway for global tea community to better understand the tea plant biology that largely benefits the whole tea industry.


Assuntos
Camellia sinensis/genética , Biologia Computacional , Genoma de Planta , Genômica , Filogenia , Chá
9.
J Environ Manage ; 249: 109427, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450198

RESUMO

Industrialization and accelerated population growth have created a huge amount of sewage sludge. Many studies have reported the sewage sludge as a sink of major and trace elements, but less is known about their geochemical fractionations. In order to assess the mobility, the distribution, bioavailability, and toxicity of those elements in sludge, we collected the sewage sludge samples from all the seven wastewater treatment plants in Xiamen City, China. Results revealed a strong spatial variation and the occurrence of 48 elements with concentrations ranging from 1.00×10-2 mg kg-1 (Re) to 9.03×101 g kg-1 (Fe) on the basis of dry sludge weight. Sequential extraction procedure showed that residual and oxidizable fractions were the main geochemical fractions of most studied elements. However, Ca, Mn, Sr, and Ni were mainly bound to acid-exchangeable fractions, while Fe, Zn, Cd, Cr, Co, and V were mainly distributed in the reducible fractions. The contamination factor and risk assessment code indicated that Ni, Cu, Zn, Cd, Cr, Co, Sr, Ca, Mn, Mo, Re, and W were highly mobile with less retention time and exerted high environmental risks through sludge land application. The sludge disposal strategy should consider not only the total concentrations of a broad range of elements but also their bioavailability.


Assuntos
Metais Pesados , Oligoelementos , China , Cidades , Medição de Risco , Esgotos , Eliminação de Resíduos Líquidos
10.
J Integr Plant Biol ; 61(2): 155-167, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30039548

RESUMO

Tea plants grow in acidic soil, but to date, their intrinsic mechanisms of acidic stress tolerance have not been elucidated. Here, we assessed the tea plant response to growth on NH4 + nutrient media having different pH and iron levels. When grown in standard NH4 + nutrient solution (iron insufficient, 0.35 mg L-1 Fe2+ ), tea roots exhibited significantly lower nitrogen accumulation, plasma membrane H+ -ATPase activity, and protein levels; net H+ efflux was lower at pH 4.0 and 5.0 than at pH 6.0. Addition of 30 mg L-1 Fe2+ (iron sufficient, mimicking normal soil Fe2+ concentrations) to the NH4 + nutrient solution led to more efficient iron plaque formation on roots and increased root plasma membrane H+ -ATPase levels and activities at pH 4.0 and 5.0, compared to the pH 6.0 condition. Furthermore, plants grown at pH 4.0 and 5.0, with sufficient iron, exhibited significantly higher nitrogen accumulation than those grown at pH 6.0. Together, these results support the hypothesis that efficient iron plaque formation, on tea roots, is important for acidic stress tolerance. Furthermore, our findings establish that efficient iron plaque formation is linked to increased levels and activities of the tea root plasma membrane H+ -ATPase, under low pH conditions.


Assuntos
Camellia sinensis/metabolismo , Ferro/metabolismo , Raízes de Plantas/metabolismo , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , ATPases Translocadoras de Prótons/metabolismo
11.
BMC Plant Biol ; 17(1): 212, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157210

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are important for plant growth and responses to environmental stresses via post-transcriptional regulation of gene expression. Tea, which is primarily produced from one bud and two tender leaves of the tea plant (Camellia sinensis), is one of the most popular non-alcoholic beverages worldwide owing to its abundance of secondary metabolites. A large number of miRNAs have been identified in various plants, including non-model species. However, due to the lack of reference genome sequences and/or information of tea plant genome survey scaffold sequences, discovery of miRNAs has been limited in C. sinensis. RESULTS: Using small RNA sequencing, combined with our recently obtained genome survey data, we have identified and analyzed 175 conserved and 83 novel miRNAs mainly in one bud and two tender leaves of the tea plant. Among these, 93 conserved and 18 novel miRNAs were validated using miRNA microarray hybridization. In addition, the expression pattern of 11 conserved and 8 novel miRNAs were validated by stem-loop-qRT-PCR. A total of 716 potential target genes of identified miRNAs were predicted. Further, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the target genes were primarily involved in stress response and enzymes related to phenylpropanoid biosynthesis. The predicted targets of 4 conserved miRNAs were further validated by 5'RLM-RACE. A negative correlation between expression profiles of 3 out of 4 conserved miRNAs (csn-miR160a-5p, csn-miR164a, csn-miR828 and csn-miR858a) and their targets (ARF17, NAC100, WER and MYB12 transcription factor) were observed. CONCLUSION: In summary, the present study is one of few such studies on miRNA detection and identification in the tea plant. The predicted target genes of majority of miRNAs encoded enzymes, transcription factors, and functional proteins. The miRNA-target transcription factor gene interactions may provide important clues about the regulatory mechanism of these miRNAs in the tea plant. The data reported in this study will make a huge contribution to knowledge on the potential miRNA regulators of the secondary metabolism pathway and other important biological processes in C. sinensis.


Assuntos
Camellia sinensis/genética , Sequência Conservada/genética , MicroRNAs/genética , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , RNA Interferente Pequeno/genética , Camellia sinensis/crescimento & desenvolvimento , Sequência Conservada/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta/genética , Genoma de Planta/fisiologia , Estudo de Associação Genômica Ampla , MicroRNAs/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Brotos de Planta/genética , RNA Interferente Pequeno/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
12.
Ecotoxicol Environ Saf ; 131: 14-21, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27162130

RESUMO

This study investigated the fluoride present in tea plants (Camellia sinensis (L.) O. Kuntze) and its relationship to soils, varieties, seasons and tea leaf maturity. The study also explored how different manufacturing processes affect the leaching of fluoride into tea beverages. The fluoride concentration in the tea leaves was significantly correlate to the concentration of water-soluble fluoride in the soil. Different tea varieties accumulated different levels of fluoride, with varieties, Anji baicha having the highest and Nongkang zao having the lowest fluoride concentration. In eight different varieties of tea plant harvested over three tea seasons, fluoride concentration were highest in the summer and lowest in the spring in china. The fluoride concentration in tea leaves was directly related to the maturity of the tea leaves at harvest. Importantly, the tea manufacturing process did not introduced fluoride contamination. The leaching of fluoride was 6.8% and 14.1% higher in black and white tea, respectively, than in fresh tea leaves. The manufacturing step most affecting the leaching of fluoride into tea beverage was withering used in white, black and oolong tea rather than rolling or fermentation. The exposure and associated health risks for fluoride concentration in infusions of 115 commercially available teas from Chinese tea markets was determined. The fluoride concentration ranged from 5.0 to 306.0mgkg(-1), with an average of 81.7mgkg(-1). The hazard quotient (HQ) of these teas indicated that there was no risk of fluorosis from drinking tea, based on statistical analysis by Monte Carlo simulation.


Assuntos
Camellia sinensis/química , Fluoretos/análise , Folhas de Planta/química , Chá/química , Camellia sinensis/crescimento & desenvolvimento , China , Manipulação de Alimentos , Humanos , Método de Monte Carlo , Medição de Risco , Estações do Ano , Solo/química , Chá/efeitos adversos
13.
Plants (Basel) ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999624

RESUMO

Light, as a critical environmental factor, plays a pivotal role in photosynthesis, ultimately influencing the timing of bud flush in tea plants. However, the synergistic effects of different photoperiods and light qualities on the timing of bud flush in the albino tea cultivar 'HuangKui' (later germination variety) remain unknown. Thus, the objective of this study was to investigate the effects of different photoperiods (12L/12D, 14L/10D, 16L/8D, and 18L/6D, where L = the number of daylight hours and D = the number of hours of darkness) and ratios of red (R) to blue (B) light (R/B 1:1, R/B 1:2, R/B 1:3, and R/B 2:1) on the germination and growth of the albino tea variety 'HuangKui'. In our study, we examined how different photoperiods and red light and blue light affected tea germination and growth by investigating the timing of bud flush, photosynthesis, chlorophyll content, and growth indicators. First, our study showed that 'HuangKui' germinated 4 days, 2 days, and 1 day earlier under the 16L/8D photoperiod at the one bud and one leaf period compared with plants cultivated under the 12L/12D, 14L/10D, and 18L/6D photoperiods under light simulating the solar spectrum. Also, the growth of 'HuangKui' was maximumly promoted under the 16L/8D photoperiod treatment. Additionally, the earliest germination of 'HuangKui' was observed for the 16L/8D photoperiod under the R/B 2:1 (red/blue) treatment compared with the other treatments. Moreover, the greatest plant height, length of the new shoots, and new leaf areas were detected in the albino tea variety 'HuangKui' under R/B 2:1. Moreover, the contents of auxin (indole acetic acid, IAA) and trans-zeatin (tZ) under R/B 2:1 were significantly higher than those under the R/B 1:1 and control treatments with the 16L/8D photoperiod. Additionally, the auxin-related expression levels of CsIAA13, CsGH3.1, CsAUX1, and CsARF2 under the R/B 2:1 treatment were significantly higher than those in the control. The expression of CsARR-B, a positive regulator of cytokinin-related genes, was significantly higher under the R/B 2:1 treatment than under the control treatment, while the opposite result was found for the expression of the negative regulator CsARR-A. Therefore, the R/B 2:1 treatment with the 16L/8D photoperiod was an appropriate means of timing the bud flush for the albino tea variety 'HuangKui', which may be related to IAA or tZ signal transduction. In conclusion, our research offers a novel lighting strategy that promotes the germination and growth of albino tea cultivars.

14.
Int J Biol Macromol ; : 134304, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084443

RESUMO

Tea plant (Camellia sinensis) is an important economical crop that frequently suffers from various herbicides, especially glyphosate. However, the molecular responses and regulatory mechanisms of glyphosate stress in tea plants remain poorly understood. Here, we reported a transcriptome dataset and identified large number of differentially expressed genes (DEGs) under glyphosate exposure. Next, two glutathione S-transferase genes (CsGSTU8-1 and CsGSTU8-2) that upregulated significantly were screened as candidate genes. Tissue-specific expression patterns showed that both CsGSTU8-1 and CsGSTU8-2 had extremely high expression levels in the roots and were predominantly localized in the nucleus and plasma membrane based on subcellular localization. Both were significantly upregulated at different time points under various stressors, including drought, cold, salt, pathogen infections, and SA treatments. An enzymatic activity assay showed that CsGSTU8-1 catalyzes the conjugation of glutathione with 2,4-dinitrochlorobenzene (CDNB). Functional analysis in yeast verified that the two genes significantly contributed to the detoxification of glyphosate, and CsGSTU8-1 had a stronger role in detoxification than CsGSTU8-2. Taken together, these findings provide insights into the molecular responses of tea plants to glyphosate and the functions of CsGSTU8s in glyphosate detoxification, which can be used as a promising genetic resource for improving herbicide resistance in tea cultivars.

15.
Food Chem ; 445: 138620, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382249

RESUMO

Gabaron green tea (GAGT) has unique flavor and health benefits through the special anaerobic treatment. However, how this composite processing affects the aroma formation of GAGT and the regulatory mechanism was rarely reported. This study used nontargeted metabolomics and molecular sensory science to overlay screen differential metabolites and key aroma contributors. The potential regulatory mechanism of anaerobic treatment on the aroma formation of GAGT was investigated by transcriptomics and correlation analyses. Five volatiles: benzeneacetaldehyde, nonanal, geraniol, linalool, and linalool oxide III, were screened as target metabolites. Through the transcriptional-level differential genes screening and analysis, some CsERF transcription factors in the ethylene signaling pathway were proposed might participate the response to the anaerobic treatment. They might regulate the expression of related genes in the metabolic pathway of the target metabolites thus affecting the GAGT flavor. The findings of this study provide novel information on the flavor and its formation of GAGT.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Chá/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Multiômica , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise
16.
Plants (Basel) ; 12(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903849

RESUMO

Light, as an energy source, has been proven to strongly affect photosynthesis and, thus, can regulate the yield and quality of tea leaves (Camellia sinensis L.). However, few comprehensive studies have investigated the synergistic effects of light wavelengths on tea growth and development in green and albino varieties. Thus, the objective of this study was to investigate different ratios of red, blue and yellow light and their effects on tea plants' growth and quality. In this study, Zhongcha108 (green variety) and Zhongbai4 (albino variety) were exposed to lights of different wavelengths for a photoperiod of 5 months under the following seven treatments: white light simulated from the solar spectrum, which served as the control, and L1 (red 75%, blue 15% and yellow 10%), L2 (red 60%, blue 30% and yellow 10%), L3 (red 45%, far-red light 15%, blue 30% and yellow 10%), L4 (red 55%, blue 25% and yellow 20%), L5 (red 45%, blue 45% and yellow 10%) and L6 (red 30%, blue 60% and yellow 10%), respectively. We examined how different ratios of red light, blue light and yellow light affected tea growth by investigating the photosynthesis response curve, chlorophyll content, leaf structure, growth parameters and quality. Our results showed that far-red light interacted with red, blue and yellow light (L3 treatments) and significantly promoted leaf photosynthesis by 48.51% in the green variety, Zhongcha108, compared with the control treatments, and the length of the new shoots, number of new leaves, internode length, new leaf area, new shoots biomass and leaf thickness increased by 70.43%, 32.64%, 25.97%, 15.61%, 76.39% and 13.30%, respectively. Additionally, the polyphenol in the green variety, Zhongcha108, was significantly increased by 15.6% compared to that of the plants subjected to the control treatment. In addition, for the albino variety Zhongbai4, the highest ratio of red light (L1 treatment) remarkably enhanced leaf photosynthesis by 50.48% compared with the plants under the control treatment, resulting in the greatest new shoot length, number of new leaves, internode length, new leaf area, new shoot biomass, leaf thickness and polyphenol in the albino variety, Zhongbai4, compared to those of the control treatments, which increased by 50.48%, 26.11%, 69.29%, 31.61%, 42.86% and 10.09%, respectively. Our study provided these new light modes to serve as a new agricultural method for the production of green and albino varieties.

17.
Plants (Basel) ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447075

RESUMO

High labor costs and labor shortages are limiting factors affecting the tea industry in Anhui Province. Thus, exploiting the full mechanization of shoot harvesting is an urgent task in the tea industry. Tea quality is greatly influenced by the integrity rate of tea leaves; therefore, it is important to choose tea cultivars suitable for machine picking. In this study, seven tea cultivars were used to investigate the relationship between internode length and blade angle with respect to newly formed tea shoots and machine harvesting in field experiments (Xuanchen City, Kuiling village) conducted throughout the year (in the autumn of 2021, in the early spring of 2022, and in the summer of 2022). Our results showed that the internode length (L2 or L4) had a significant and positive correlation with the integrity rate of tea buds and leaves in seven tea cultivars over three seasons. However, no significant correlation was found between the blade angle and the integrity rate of tea buds and leaves. In addition, a strong and positive correlation was found between the levels of GA1 (R2 > 0.7), GA3 (R2 > 0.85), and IAA (R2 > 0.6) regarding the internodes and internode lengths of the seven tea cultivars. Moreover, the relative expression levels of CsGA20ox, CsGA3ox1, and CsGA3ox2 in Echa1 (the longer internode) were significantly higher compared with those in Zhenong113 (the shorter internode). Overall, our results show that the internode length is an important factor for the machine harvesting of tea leaves and that the level of GA3 is strongly associated with internode length.

18.
Plant Cell Rep ; 31(1): 27-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21850593

RESUMO

C-repeat/dehydration-responsive element binding factors (CBFs) can induce the expression of a suite of cold-responsive genes to increase plant cold tolerance, and inducer of CBF expression 1 (ICE1) is a major activator for CBF. In the present study, we isolated the full-length cDNAs of ICE1 and CBF from Camellia sinensis, designated as CsICE1 and CsCBF1, respectively. The deduced protein CsICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE1-like proteins. CsCBF1 contains all conserved domains of CBFs in other plant species and can specifically bind to the C-repeat/dehydration-responsive element (CRT/DRE) as confirmed by electrophoretic mobility shift assay. The transcription of CsICE1 had no apparent alteration after chilling treatment (4°C). CsCBF1 expression was not detected in normal temperature (20°C) but was induced immediately and significantly by low temperature (4°C). Our results suggest that ICE1-CBF cold-response pathway is conserved in tea plants. CsICE1 and CsCBF1, two components of this pathway, play roles in cold responses in tea plants.


Assuntos
Camellia sinensis/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Aclimatação/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Temperatura Baixa , Sequência Conservada , DNA Complementar , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Sequências Hélice-Alça-Hélice/genética , Filogenia , Elementos de Resposta
19.
Tree Physiol ; 42(8): 1613-1627, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271713

RESUMO

Theanine is an important quality parameter referring to tea quality. Applying nitrogen fertilizers is one strategy to improve the level of theanine; however, the effect of plant growth-promoting rhizobacteria on theanine synthesis in tea roots has been less studied. In this study, the bacteria isolated from Qimen County with the maximum potassium (K) solubilization were identified as Bacillus by biochemical and molecular analyses. We show that tartaric and pyruvic acids produced by Bacillus were important components related to K solubilization in vitro. Pot experiments and enzymatic assays in vitro showed that inoculation with Bacillus-secreted organic acids increased the level of available potassium in the soil. The increased K level activated recombinant CsTSI activity (theanine biosynthesis enzyme) and increased ethylamine content (the synthesis precursor of theanine), resulting in promoted theanine synthesis in tea roots. Therefore, our study indicates that Bacillus can be a potential bioinoculant for biofortification of tea.


Assuntos
Bacillus , Camellia sinensis , Bactérias , Glutamatos , Folhas de Planta/química , Potássio/análise , Chá
20.
Life (Basel) ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295084

RESUMO

Millions of wastewater treatment plants (WWTPs) based on the activated sludge process have been established worldwide to help to purify wastewater. However, a vast amount of sludge is inevitably generated, and the cost of sludge disposal could reach over half of the total operation cost of a WWTP. Various sludge reduction techniques have been developed, including physicochemical, biological, and combinational methods. Micro-organisms that could reduce sludge by cryptic growth are vital to the biological approach. Currently, only limited functional bacteria have been isolated, and the lack of knowledge on the underlying mechanism hinders the technique development. Therefore, the present study is aimed at isolating sludge-reducing bacteria and optimizing the sludge reduction process through response surface methodology. Nineteen strains were obtained from sludge. The mix-cultures did not show a higher sludge reduction rate than the pure culture, which may be ascribed to the complicated interactions, such as competition and antagonistic effects. In total, 21.2% and 13.9% of total suspended and volatile suspended solids were reduced within 48 h after optimization. The three-dimensional excitation-emission matrix fluorescence spectrum and hydrolases test results revealed that the sludge reduction might be promoted by the strain mainly through hydrolysis via proteinase and amylase. The results obtained from the study demonstrate the potential of using micro-organisms for sludge reduction through cryptic growth.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa