Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Cell Mol Med ; 28(12): e18494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890797

RESUMO

Stress triggers a comprehensive pathophysiological cascade in organisms. However, there is a substantial gap in the research regarding the effects of stress on liver function. This study aimed to investigate the impact of restraint stress on hepatocellular damage and elucidate the underlying molecular mechanisms. An effective mouse restraint stress model was successfully developed, and liver function analysis was performed using laser speckle imaging, metabolomics and serum testing. Alterations in hepatocyte morphology were assessed using haematoxylin and eosin staining and transmission electron microscopy. Oxidative stress in hepatocytes was assessed using lipid reactive oxygen species and malondialdehyde. The methylation status and expression of GSTP1 were analysed using DNA sequencing and, real-time PCR, and the expression levels of GPX4, TF and Nrf2 were evaluated using real-time quantitative PCR, western blotting, and immunohistochemical staining. A stress-induced model was established in vitro by using dexamethasone-treated AML-12 cells. To investigate the underlying mechanisms, GSTP1 overexpression, small interfering RNA, ferroptosis and Nrf2 inhibitors were used. GSTP1 methylation contributes to stress-induced hepatocellular damage and dysfunction. GSTP1 is involved in ferroptosis-mediated hepatocellular injury induced by restraint stress via the TF/Nrf2 pathway. These findings suggest that stress-induced hepatocellular injury is associated with ferroptosis, which is regulated by TF/Nrf2/GSTP1.

2.
Lipids Health Dis ; 23(1): 68, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431645

RESUMO

BACKGROUND: Stress is implicated in various pathological conditions leading to liver injury. Existing evidence suggests that excessive stress can induce mitochondrial damage in hepatocytes, yet the underlying mechanism remains unclear. Ceramide synthase 6 (CerS6)-derived C16:0 ceramide is recognised as a lipotoxic substance capable of causing mitochondrial damage. However, the role of CerS6 in stress has received insufficient attention. This study aimed to explore the involvement of CerS6 in stress-induced hepatic damage and its associated mechanisms. METHODS: The rat restraint stress model and a corticosterone (CORT)-induced hepatocyte stress model were employed for in vivo and in vitro experimental analyses, respectively. Changes in mitochondrial damage and ceramide metabolism in hepatocytes induced by stress were evaluated. The impact of CORT on mitochondrial damage and ceramide metabolism in hepatocytes was assessed following CerS6 knockdown. Mitochondria were isolated using a commercial kit, and ceramides in liver tissue and hepatocytes were detected by LC-MS/MS. RESULTS: In comparison to the control group, rats subjected to one week of restraint exhibited elevated serum CORT levels. The liver displayed significant signs of mitochondrial damage, accompanied by increased CerS6 and mitochondrial C16:0 ceramide, along with activation of the AMPK/p38 MAPK pathway. In vitro studies demonstrated that CORT treatment of hepatocytes resulted in mitochondrial damage, concomitant with elevated CerS6 and mitochondrial C16:0 ceramide. Furthermore, CORT induced sequential phosphorylation of AMPK and p38 MAPK proteins, and inhibition of the p38 MAPK pathway using SB203580 mitigated the CORT-induced elevation in CerS6 protein. Knocking down CerS6 in hepatocytes inhibited both the increase in C16:0 ceramide and the release of mitochondrial cytochrome c induced by CORT. CONCLUSIONS: CerS6-associated C16:0 ceramide plays a mediating role in stress-induced mitochondrial damage in hepatocytes. The molecular mechanism is linked to CORT-induced activation of the AMPK/p38 MAPK pathway, leading to upregulated CerS6.


Assuntos
Proteínas Quinases Ativadas por AMP , Espectrometria de Massas em Tandem , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Cromatografia Líquida , Ceramidas/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474189

RESUMO

Coronary artery spasm (CAS) plays an important role in the pathogeneses of various ischemic heart diseases and has gradually become a common cause of life-threatening arrhythmia. The specific molecular mechanism of CAS has not been fully elucidated, nor are there any specific diagnostic markers for the condition. Therefore, this study aimed to examine the specific molecular mechanism underlying CAS, and screen for potential diagnostic markers. To this end, we successfully constructed a rat CAS model and achieved in vitro culture of a human coronary-artery smooth-muscle cell (hCASMC) contraction model. Possible molecular mechanisms by which protein kinase C (PKC) regulated CAS through the C kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa (CPI-17)/myosin II regulatory light chain (MLC2) pathway were studied in vivo and in vitro to screen for potential molecular markers of CAS. We performed hematoxylin and eosin staining, myocardial zymogram, and transmission electron microscopy to determine myocardial and coronary artery injury in CAS rats. Then, using immunohistochemical staining, immunofluorescence staining, and Western blotting, we further demonstrated a potential molecular mechanism by which PKC regulated CAS via the CPI-17/MLC2 pathway. The results showed that membrane translocation of PKCα occurred in the coronary arteries of CAS rats. CPI-17/MLC2 signaling was observably activated in coronary arteries undergoing CAS. In addition, in vitro treatment of hCASMCs with angiotensin II (Ang II) increased PKCα membrane translocation while consistently activating CPI-17/MLC2 signaling. Conversely, GF-109203X and calphostin C, specific inhibitors of PKC, inactivated CPI-17/MLC2 signaling. We also collected the coronary artery tissues from deceased subjects suspected to have died of CAS and measured their levels of phosphorylated CPI-17 (p-CPI-17) and MLC2 (p-MLC2). Immunohistochemical staining was positive for p-CPI-17 and p-MLC2 in the tissues of these subjects. These findings suggest that PKCα induced CAS through the CPI-17/MLC2 pathway; therefore, p-CPI-17 and p-MLC2 could be used as potential markers for CAS. Our data provide novel evidence that therapeutic strategies against PKC or CPI-17/MLC2 signaling might be promising in the treatment of CAS.


Assuntos
Vasoespasmo Coronário , Animais , Humanos , Ratos , Biomarcadores/metabolismo , Morte Súbita Cardíaca , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa/metabolismo
4.
J Cell Mol Med ; 27(21): 3313-3325, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37593898

RESUMO

Mitochondria are sensitive organelles that sense intrinsic and extrinsic stressors and maintain cellular physiological functions through the dynamic homeostasis of mitochondrial fusion and fission. Numerous pathological processes are associated with mitochondrial fusion and fission disorders. However, the molecular mechanism by which stress induces cardiac pathophysiological changes through destabilising mitochondrial fusion and fission is unclear. Therefore, this study aimed to investigate whether the endoplasmic reticulum stress signalling pathway initiated by the turbulence of mitochondrial fusion and fission under stressful circumstances is involved in cardiomyocyte damage. Based on the successful establishment of the classical stress rat model of restraint plus ice water swimming, we measured the content of serum lactate dehydrogenase. We used haematoxylin-eosin staining, special histochemical staining, RT-qPCR and western blotting to clarify the cardiac pathology, ultrastructural changes and expression patterns of mitochondrial fusion and fission marker proteins and endoplasmic reticulum stress signalling pathway proteins. The results indicated that mitochondrial fusion and fission markers and proteins of the endoplasmic reticulum stress JNK signalling pathway showed significant abnormal dynamic changes with the prolongation of stress, and stabilisation of mitochondrial fusion and fission using Mdivi-1 could effectively improve these abnormal expressions and ameliorate cardiomyocyte injury. These findings suggest that stress could contribute to pathological cardiac injury, closely linked to the endoplasmic reticulum stress JNK signalling pathway induced by mitochondrial fusion and fission turbulence.


Assuntos
Dinâmica Mitocondrial , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Estresse do Retículo Endoplasmático/genética
5.
Nano Lett ; 22(15): 6418-6427, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856800

RESUMO

Aberrant energy metabolism not only endows tumor cells with unlimited proliferative capacity but also contributes to the establishment of the glucose-deficient/lactate-rich immunosuppressive tumor microenvironment (ITM) impairing antitumor immunity. Herein, a novel metabolic nanoregulator (D/B/CQ@ZIF-8@CS) was developed by enveloping 2-deoxy-d-glucose (2-DG), BAY-876, and chloroquine (CQ) into zeolitic imidazolate framework-8 (ZIF-8) to simultaneously deprive the energy/nutrition supply of tumor cells and relieve the ITM for synergetic tumor starvation-immunotherapy. Aerobic glycolysis, glucose uptake, and autophagy flux could be concurrently blocked by D/B/CQ@ZIF-8@CS, cutting off the nutrition/energy supply and the source of lactate. Furthermore, inhibition of glucose uptake and aerobic glycolysis could effectively reverse the glucose-deficient/lactate-rich ITM, thus functionally inactivating regulatory T cells and augmenting anti-CTLA-4 immunotherapy. Such a two-pronged strategy would provide new insights for the design of metabolic intervention-based synergistic cancer therapy.


Assuntos
Glicólise , Neoplasias , Linhagem Celular Tumoral , Metabolismo Energético , Glucose/metabolismo , Humanos , Terapia de Imunossupressão , Lactatos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629166

RESUMO

The dorsomedial hypothalamus nucleus (DMH) is an important component of the autonomic nervous system and plays a critical role in regulating the sympathetic outputs of the heart. Stress alters the neuronal activity of the DMH, affecting sympathetic outputs and triggering heart rate variability. However, the specific molecular mechanisms behind stress leading to abnormal DMH neuronal activity have still not been fully elucidated. Therefore, in the present study, we successfully constructed a stressed rat model and used it to investigate the potential molecular mechanisms by which IL-6 regulates GABAA receptors in the DMH through activation of the JAK/STAT pathway and thus affects heart rate variability in rats. By detecting the c-Fos expression of neurons in the DMH and electrocardiogram (ECG) changes in rats, we clarified the relationship between abnormal DMH neuronal activity and heart rate variability in stressed rats. Then, using ELISA, immunohistochemical staining, Western blotting, RT-qPCR, and RNAscope, we further explored the correlation between the IL-6/JAK/STAT signaling pathway and GABAA receptors. The data showed that an increase in IL-6 induced by stress inhibited GABAA receptors in DMH neurons by activating the JAK/STAT signaling pathway, while specific inhibition of the JAK/STAT signaling pathway using AG490 obviously reduced DMH neuronal activity and improved heart rate variability in rats. These findings suggest that IL-6 regulates the expression of GABAA receptors via the activation of the JAK/STAT pathway in the DMH, which may be an important cause of heart rate variability in stressed rats.


Assuntos
Interleucina-6 , Receptores de GABA-A , Animais , Ratos , Frequência Cardíaca , Interleucina-6/genética , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Hipotálamo
7.
Int J Legal Med ; 136(5): 1303-1307, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35394178

RESUMO

Formaldehyde is a colourless irritating gas at room temperature, which, therefore, is usually stored in liquid form. This compound is often used as an antiseptic, disinfectant and fumigant in biology and medicine. Formaldehyde, as a potential carcinogen confirmed by the World Health Organization (WHO), is seriously harmful to human systems, such as the respiratory system, immune system and reproductive system. This article reports a case of a 50-year-old woman who died after accidentally drinking 25% formaldehyde solution in a transparent plastic bottle. Anatomical examination revealed fixed tissue morphology of the stomach and adjacent organs. The toxicity test results showed that the concentrations of formaldehyde in the blood and gastric tissue were 36.56 mg/kg and 274.48 mg/kg, respectively, which was consistent with death from formaldehyde poisoning. Due to the particular smell of formaldehyde, poisoning by accidentally drinking formaldehyde solution is rare. Of late, the mechanism of death from formaldehyde poisoning is that it rapidly causes coagulation of tissue cell protein, which may lose its normal function. Based on the pathological characteristics of the case, we put forward a new viewpoint on the mechanism of death from formaldehyde poisoning in which formaldehyde causes rapid fixation of blood in the tissue, thus leading to acute circulatory disturbance.


Assuntos
Formaldeído , Intoxicação , Acidentes , Feminino , Formaldeído/efeitos adversos , Humanos , Pessoa de Meia-Idade , Intoxicação/patologia , Hipersensibilidade Respiratória , Estômago/patologia
8.
Proc Natl Acad Sci U S A ; 115(19): 4845-4850, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29674448

RESUMO

We report experimental 2D infrared (2D IR) spectra of coherent light-matter excitations--molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light-matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.

9.
Sensors (Basel) ; 20(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963953

RESUMO

The precision of target-based registration is related to the geometry distribution of targets, while the current method of setting the targets mainly depends on experience, and the impact is only evaluated qualitatively by the findings from empirical experiments and through simulations. In this paper, we propose a new quantitative evaluation model, which is comprised of the rotation dilution of precision (, assessing the impact of targets' geometry distribution on the rotation parameters) and the translation dilution of precision (, assessing the impact of targets' geometry distribution on the translation parameters). Here, the definitions and derivation of relevant formulas of the and are given, the experience conclusions are theoretically proven by the model of and , and an accurate method for determining the optimal placement location of targets and the scanner is proposed by calculating the minimum value of and . Furthermore, we can refer to the model ( and ) as a unified model of the geometric distribution evaluation model, which includes the model in GPS.

10.
Langmuir ; 35(43): 13815-13820, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31584824

RESUMO

Vibrational sum frequency generation (VSFG) spectroscopy and surface pressure measurements are used to investigate the adsorption of a globular protein, bovine serum albumin (BSA), at the air/water interface with and without the presence of salts. We find at low (2 to 5 ppm) protein concentrations, which is relevant to environmental conditions, both VSFG and surface pressure measurements of BSA behave drastically different from at higher concentrations. Instead of emerging to the surface immediately, as observed at 1000 ppm, protein adsorption kinetics is on the order of tens of minutes at lower concentrations. Most importantly, salts strongly enhance the presence of BSA at the interface. This "salting up" effect differs from the well-known "salting out" effect as it occurs at protein concentrations well-below where "salting out" occurs. The dependence on salt concentration suggests this effect relates to a large extent electrostatic interactions and volume exclusion. Additionally, results from other proteins and the pH dependence of the kinetics indicate that salting up depends on the flexibility of proteins. This initial report demonstrates "salting up" as a new type of salt-driven interfacial phenomenon, which is worthy of continued investigation given the importance of salts in biological and environmental aqueous systems.


Assuntos
Ar , Soroalbumina Bovina/química , Água/química , Animais , Bovinos , Microscopia Óptica não Linear
11.
J Chem Phys ; 150(11): 114706, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901984

RESUMO

We demonstrate heterodyne detected transient vibrational sum frequency generation (VSFG) spectroscopy and use it to probe transient electric fields caused by interfacial charge transfer at organic semiconductor and metal interfaces. The static and transient VSFG spectra are composed of both non-resonant and molecular resonant responses. To further disentangle both contributions, we apply phase rotation to make the imaginary part of the spectra be purely molecular responses and the real part of the spectra be dominated by non-resonant signals. By separating non-resonant and molecular signals, we can track their responses to the transient electric-fields at interfaces independently. This technique combined with the phase sensitivity gained by heterodyne detection allows us to successfully identify three types of photoinduced dynamics at organic semiconductor/metal interfaces: coherent artifacts, optical excitations that do not lead to charge transfer, and direct charge transfers. The ability to separately follow the influence of built-in electric fields to interfacial molecules, regardless of strong non-resonant signals, will enable tracking of ultrafast charge dynamics with molecular specificities on molecular optoelectronics, photovoltaics, and solar materials.

12.
Int J Mol Sci ; 20(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634592

RESUMO

The ventral tegmental area (VTA), a critical portion of the mesencephalic dopamine system, is thought to be involved in the development and maintenance of addiction. It has been proposed that the dopaminergic regulatory factors TH, Nurr1, and Pitx3 are crucial for determining the survival and maintenance of dopaminergic neurons. Thus, the present study investigated whether abnormalities in these dopaminergic regulatory factors in the VTA were associated with neuronal injury induced by chronic morphine dependence. Rat models with different durations of morphine dependence were established. Thionine staining was used to observe morphological changes in the VTA neurons. Immunohistochemistry and western blot were used to observe changes in the expression of the dopaminergic regulatory proteins TH, Nurr1, and Pitx3. Thionine staining revealed that prolonged morphine dependence resulted in dopaminergic neurons with edema, a lack of Nissl bodies, and pyknosis. Immunohistochemistry showed that the number of TH⁺, Nurr1⁺, and Pitx3⁺ cells, and the number of TH⁺ cells expressing Nurr1 or Pitx3, significantly decreased in the VTA after a long period of morphine dependence. Western blot results were consistent with the immunohistochemistry findings. Chronic morphine exposure resulted in abnormalities in dopaminergic regulatory factors and pathological changes in dopaminergic neurons in the VTA. These results suggest that dysregulation of dopaminergic regulatory factors in the VTA are associated with neuronal injury induced by chronic morphine dependence.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Dependência de Morfina/metabolismo , Dependência de Morfina/patologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/patologia , Animais , Expressão Gênica , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Masculino , Dependência de Morfina/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Ratos , Fatores de Transcrição/genética , Tirosina 3-Mono-Oxigenase/genética
13.
J Am Chem Soc ; 140(48): 16720-16730, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400739

RESUMO

Lead halide-based perovskite materials have been applied as an intrinsic layer for next-generation photovoltaic devices. However, the stability and performance reproducibility of perovskite solar cells (PSCs) needs to be further improved to match that of silicon photovoltaic devices before they can be commercialized. One of the major bottlenecks that hinders the improvement of device stability/reproducibility is the additives in the hole-transport layer, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4- tert-butylpyridine (tBP). Despite the positive effects of these hole-transport layer additives, LiTFSI is hygroscopic and can adsorb moisture to accelerate the perovskite decomposition. On the other hand, tBP, the only liquid component in PSCs, which evaporates easily, is corrosive to perovskite materials. Since 2012, the empirical molar ratio 6:1 tBP:LiTFSI has been wildly applied in PSCs without further concerns. In this study, the formation of tBP-LiTFSI complexes at various molar ratios has been discovered and investigated thoroughly. These complexes in PSCs can alleviate the negative effects (decomposition and corrosion) of individual components tBP and LiTFSI while maintaining their positive effects on perovskite materials. Consequently, a minor change in tBP:LiTFSI ratio results in huge influences on the stability of perovskite. Due to the existence of uncomplexed tBP in the 6:1 tBP:LiTFSI mixture, this empirical tBP-LiTFSI molar ratio has been demonstrated not as the ideal ratio in PSCs. Instead, the 4:1 tBP:LiTFSI mixture, in which all components are complexed, shows all positive effects of the hole-transport layer components with dramatically reduced negative effects. It minimizes the hygroscopicity of LiTFSI, while lowering the evaporation speed and corrosive effect of tBP. As a result, the PSCs fabricated with this tBP:LiTFSI ratio have the highest average device efficiency and obviously decreased efficiency variation with enhanced device stability, which is proposed as the golden ratio in PSCs. Our understanding of interactions between hole-transport layer additives and perovskite on a molecular level shows the pathway to further improve the PSCs' stability and performance reproducibility to make them a step closer to large-scale manufacturing.

14.
Cell Physiol Biochem ; 42(3): 1098-1108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662512

RESUMO

AIMS: To investigate the effect of RU486 (mifepristone) on emotional disorders in chronic restraint stress-induced rats and to explore the mechanisms of that phenomenon. METHODS: For this purpose, 80 healthy male Sprague Dawley rats were randomly divided into four groups: the normal group (Con group, The Con group members received no treatment, eating and drinking freely), the chronic restraint stress group (CRS group, normal Sprague Dawley rats treated with chronic restraint stress, 6 h/day for 21days), the propylene glycol group (CRS+propylene glycol) and the RU486 group (CRS+RU486). RU486 or propylene glycol was administered 30 mins before each CRS procedure. Twenty-four hours after CRS exposure, we investigated the effects of CRS on the anxiety-like behavior using an elevated plus-maze (EPM). To explore the mechanisms of RU486 on anxiety, we measured the expression of glial fibrillary acid protein (GFAP) and ß-subunit of S100 (S100ß) via immunohistochemistry and western blot analysis. Apoptosis was demonstrated by flow cytometry. In addition, endoplasmic reticulum (ER) stress markers, glucose regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and Cysteine aspartic acid specific protease-12 (Caspase-12), were detected by western blot analysis. RESULTS: Compared to the control group, rats in the CRS and propylene glycol group showed decreased exploratory behavior on the open arms during EPM testing, and these reductions were accompanied by significantly reduced GFAP and S100ß expression, increased apoptosis and GRP78, CHOP, and caspase-12 expression in the amygdala. However, RU486 increases the exploratory behavior and reverses the changes of GFAP, S100ß, GRP78, CHOP, and caspase-12 and protects cells against apoptosis. CONCLUSIONS: Taken together, these data suggest that exposure to chronic restraint stress decreases the number of astrocytes and induces apoptosis and ER stress in the amygdala, which are possible causes for psychiatric disorders. RU486 can significantly ameliorate abnormal behaviors in CRS-induced anxiety model rats. The protective effects of RU486 could be attributed to its anti-ER stress, anti-apoptosis and astrocyte increasing effects.


Assuntos
Ansiedade/tratamento farmacológico , Astrócitos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Antagonistas de Hormônios/uso terapêutico , Mifepristona/uso terapêutico , Estresse Psicológico/tratamento farmacológico , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Ratos Sprague-Dawley , Subunidade beta da Proteína Ligante de Cálcio S100/análise , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
15.
Immunopharmacol Immunotoxicol ; 39(1): 2-10, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27875906

RESUMO

OBJECTIVES: Our previous studies demonstrated that pretreatment with cholecystokinin octapeptide (CCK-8) could alleviate endothelial cell injury and reverse abnormal vascular reactivity as well as reduce LPS-induced inflammation cascades, which suggested that CCK-8 plays a potential role in anti-endotoxic shock. The present study aimed to determine the therapeutic effects of CCK-8 on rat liver and kidney microcirculatory perfusion disorder under endotoxic shock (ES) conditions. MATERIALS AND METHODS: Sprague-Dawley rats were induced to lethal endotoxic shock by an injection of LPS. CCK-8 was administered 30 min after LPS injection. Either a specific CCK-1R antagonist or CCK-2R antagonist was injected before CCK-8 treatment. The mean arterial pressure (MAP), liver and kidney microcirculatory perfusion, and heart rate (HR) were recorded with a multi-channel data acquisition system. The serum concentrations of alanine aminotransferase (ALT) and creatinine (Cr) were measured, and the histopathological changes in the liver and kidney were also observed. RESULTS: Administration of CCK-8 significantly delayed the LPS-induced decreases in not only the liver and kidney microcirculation perfusion but also the HR. The pathology changes induced by LPS in the liver and kidney tissues were significantly mitigated in the LPS + CCK-8 group. The levels of ALT and Cr in the serum of the LPS + CCK-8 group were obviously lower than those in the LPS group. In addition, the specific antagonist at the CCK-2 receptor (CCK-2R) abrogated the action of CCK-8 significantly. CONCLUSIONS: These results indicated that CCK-8 has potential therapeutic effects on microcirculation failure in an ES rat model via the CCK-2 receptor.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Colecistocinina/farmacologia , Nefropatias/tratamento farmacológico , Rim/irrigação sanguínea , Fígado/irrigação sanguínea , Microcirculação/efeitos dos fármacos , Oligopeptídeos/farmacologia , Choque Séptico/tratamento farmacológico , Sincalida/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Choque Séptico/patologia
16.
Brain Res Bull ; 206: 110861, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141789

RESUMO

Based on the successful establishment of a rat model of chronic restraint stress, we used multiple algorithms to quantify the morphological changes of rat hypothalamic microglia from various perspectives, providing a pathomorphological basis for the subsequent study of molecular mechanisms of hypothalamic stress injury, such as neuroinflammation. To verify the successful establishment of the chronic stress model, an enzyme-linked immunosorbent assay was performed to detect serum glucocorticoid levels. Microglia labeled with Iba1 in frozen sections of rat hypothalamus were scanned and photographed at multiple levels using confocal microscopy. Subsequently, images were processed for external contouring and skeletonization, and morphological indices of microglia were calculated and analyzed using fractal, skeleton, and Sholl analysis. In addition, the co-expression of CD68 (a marker that can reflect phagocytic activity) and Iba1 was observed by immunofluorescence technique. Compared with the control group, microglia in the chronic stress group displayed reduced fractal dimension and lacunarity, increased density and circularity, enlarged soma areas, and shortened and reduced branches. Sholl analysis confirmed the reduced complexity of microglia following chronic stress. Meanwhile, microglia CD68 increased significantly, indicating that the microglia in the chronic stress group have greater phagocytosis activity. In summary, chronic restraint stress promoted the conversion of microglia in the rat hypothalamus to a less complex form, manifested as larger soma, shorter and fewer branches, more uniform and dense texture, and increased circularity; indeed, the shape of these microglia resembled that of amoeba and they displayed strong phagocytosis activity.


Assuntos
Hipotálamo , Microglia , Ratos , Animais
17.
Sci Rep ; 14(1): 13543, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866996

RESUMO

The objective of this study was to investigate spleen pathology and immune cell subset alterations in mice exposed to acute and chronic restraint stress over various timeframes. A deeper understanding of stress-induced spleen injuries can provide new insights into the mechanisms underlying stress-induced disorders. C57BL/6N mice were restrained for different durations (1, 3, 7, 14 and 21 days) for 6-8 h daily. The control mice were observed at the same time points. Post restraint, behavioural experiments were conducted to assess spleen weight, gross morphology and microscopic histological changes. Immunohistochemical staining was used to detect changes in glucocorticoid receptor (GR) expression, immune cell subsets and cell proliferation in response to stress. Our analysis revealed significant behavioural abnormalities in the stressed mice. In particular, there was an increase in the nuclear expression of GR beginning on Day 3, and it peaked on Day 14. The spleens of stressed mice displayed a reduction in size, disordered internal tissue structure and reduced cell proliferation. NK cells and M2-type macrophages exhibited immune cell subset alterations under stress, whereas T or B cells remained unaltered. Restraint stress can lead to pathomorphological alterations in spleen morphology, cell proliferation and immune cell counts in mice. These findings suggest that stress-induced pathological changes can disrupt immune regulation during stress.


Assuntos
Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides , Restrição Física , Baço , Estresse Psicológico , Animais , Baço/patologia , Baço/metabolismo , Receptores de Glucocorticoides/metabolismo , Camundongos , Masculino , Estresse Psicológico/imunologia , Proliferação de Células , Fatores de Tempo , Células Matadoras Naturais/imunologia , Estresse Fisiológico , Macrófagos/imunologia , Macrófagos/metabolismo
18.
Brain Sci ; 14(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38391735

RESUMO

The amygdala is a core region in the limbic system that is highly sensitive to stress. Astrocytes are key players in stress disorders such as anxiety and depression. However, the effects of stress on the morphology and function of amygdala astrocytes and its potential mechanisms remain largely unknown. Hence, we performed in vivo and in vitro experiments using a restraint stress (RS) rat model and stress-induced astrocyte culture, respectively. Our data show that norepinephrine (NE) content increased, cytotoxic edema occurred, and aquaporin-4 (AQP4) expression was up-regulated in the basolateral amygdala (BLA) obtained from RS rats. Additionally, the p38 mitogen-activated protein kinase (MAPK) pathway was also observed to be significantly activated in the BLA of rats subjected to RS. The administration of NE to in vitro astrocytes increased the AQP4 level and induced cell edema. Furthermore, p38 MAPK signaling was activated. The NE inhibitor alpha-methyl-p-tyrosine (AMPT) alleviated cytotoxic edema in astrocytes, inhibited AQP4 expression, and inactivated the p38 MAPK pathway in RS rats. Meanwhile, in the in vitro experiment, the p38 MAPK signaling inhibitor SB203580 reversed NE-induced cytotoxic edema and down-regulated the expression of AQP4 in astrocytes. Briefly, NE-induced activation of the p38 MAPK pathway mediated cytotoxic edema in BLA astrocytes from RS rats. Thus, our data provide novel evidence that NE-induced p38 MAPK pathway activation may be one of the mechanisms leading to cytotoxic edema in BLA under stress conditions, which also could enable the development of an effective therapeutic strategy against cytotoxic edema in BLA under stress and provide new ideas for the treatment of neuropsychiatric diseases.

19.
Front Mol Neurosci ; 17: 1381098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685915

RESUMO

Prolonged or repeated exposure to stress elevates the risk of various psychological diseases, many of which are characterized by central nervous system dysfunction. Recent studies have demonstrated that circular RNAs (circRNAs) are highly abundant in the mammalian brain. Although their precise expression and function remain unknown, they have been hypothesized to regulate transcriptional and post-transcriptional gene expression. In this investigation, we comprehensively analyzed whether restraint stress for 2 days altered the circRNA expression profile in the amygdala of male rats. The impact of restraint stress on behavior was evaluated using an elevated plus maze and open field test. Serum corticosterone levels were measured using an enzyme-linked immunosorbent assay. A total of 10,670 circRNAs were identified using RNA sequencing. Ten circRNAs were validated by reverse transcription and quantitative polymerase chain reaction analysis. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analyzes supported the notion that genes associated with differentially expressed circRNAs are primarily implicated in neuronal activity and neurotransmitter transport. Moreover, the three differentially expressed circRNAs showed high specificity in the amygdala. Overall, these findings indicate that differentially expressed circRNAs are highly enriched in the amygdala and offer a potential direction for further research on restraint stress.

20.
Forensic Sci Int ; 354: 111912, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103455

RESUMO

INTRODUCTION: Objective assessment of cardiac hypertrophy in forensic pathology practice is of great significance for forensic pathologists, for whom reference values for normal heart weights are needed. Developed regions such as Europe, the United States, and Japan recalculate the weight of human organs at regular intervals, but in China, there has been no systematic calculation of the weights of human organs since 2006. AIMS: To statistically analyse the heart weight of Chinese adults postmortem and obtain a reference range. MATERIALS AND METHODS: 4170 adult autopsy reports were collected from 12 forensic departments in 10 provinces in China. The causes of death were classified by sex, and heart weight and the heart weight/body height ratio reference values were further calculated according to different body mass index and body heights. Finally, the cutoff value of cardiac hypertrophy in Chinese adults was calculated. RESULTS: In the group of non-cardiovascular disease causes of death, the cardiac weight of the electric death group was higher, while the heart weight of the prolonged bed-rest group was significantly reduced. After the electric death and prolonged bed-rest groups were excluded, heart weight, the heart weight/body height ratio, and cutoff values for cardiac hypertrophy were further classified and analysed according to body mass index. The mean reference values for heart weight in men and women with normal weight status were 325.82 ± 41.60 g and 286.39 ± 44.84 g, and the heart weight/body height ratios were 1.95 ± 0.23 in men and 1.82 ± 0.27, respectively. The cutoff values for cardiac hypertrophy were 387.35 g for men and 346.80 g for women. CONCLUSION: The heart weight reference values of both sexes in this study were significantly higher than those in 2006, which is considered related to the development of China's economy and the improvement of people's living standards. This study also suggests the need for a new round of statistical surveys and updated data on the weight of other organs.


Assuntos
Cardiomegalia , Coração , Masculino , Adulto , Humanos , Feminino , Autopsia , Patologia Legal , China , Peso Corporal , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa