Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1289546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099001

RESUMO

Pu-erh tea pomace (PTP), a solid substance after extracting functional substances or steeping tea, is rich in crude protein, and crude fiber, and could be used as considerable bioactive substances in animal production. However, its application as poultry feed and its role in regulating the characteristics of gut microorganisms is unclear. The present study investigated the effects of PTP on growth performance and gut microbes of chicken. A total of 144 Chahua chickens No. 2 were individually housed and divided into three groups which were fed diets containing 0% (CK), 1% PTP (T1), and 2% PTP (T2), respectively. The serum and cecum contents were collected after slaughter for analysis. The results indicated that growth performance and carcass traits were not affected by the PTP content. Serum total triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels in the T1 and T2 groups were significantly lower than in the CK group (p < 0.05). The gut microbiota α-diversity in the T2 group was significantly lower than in the CK group (p < 0.05). Based on partial least squares-discriminant analysis (PLS-DA), we observed significant segregation in gut bacterial communities among the groups. At the phylum level, Bacteroidetes and Firmicutes were dominant in the cecum, occupying about 85% of the cecum flora. The relative abundance of Bacteroidetes tended to increase. At the genus level, the relative abundance of Bacteroides is the highest in the CK、T1 and T2 groups. The relative abundances of Bacteroides and Prevotellaceae_UCG-001 microorganisms in the T2 group were significantly higher than in the CK group (p < 0.05). However, the relative abundance of CHKCI001 microorganisms in the T2 group was significantly lower compared to the CK group (p < 0.05). TG content was significantly positively correlated with CHKCI001 relative abundance, and significantly negatively correlated with Prevotellaceae_UCG-001 relative abundance (p < 0.05). Moreover, the LDL-C content was significantly positively correlated with CHKCI001 relative abundance (p < 0.05). In conclusion, PTP could decrease the cholesterol levels in the blood by improving the composition of gut microbiota, which provides a reference for the application of PTP in the poultry industry.

2.
Virology ; 588: 109886, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37806007

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is an acute infectious disease that spreads rapidly among pigs and seriously threatens the pig industry. Activation of ERK1/2 is a hallmark of most viral infections. RACK1 interacts with a variety of kinases and membrane receptors that closely associated with viral infections and the development and progression of cancer. However, no studies have clearly defined whether RACK1 can regulate PRRSV infection through ERK1/2 activation. In our study, using RT-qPCR, immunoblotting, indirect fluorescent staining, siRNA knockdown and protein overexpression techniques, we found that downregulation of cellular RACK1 inhibited ERK1/2 activation and subsequently suppressed PRRSV infection, while overexpression of RACK1 enhanced ERK1/2 activation and PRRSV infection. Bioinformatic and Co-immunoprecipitation experimental analysis revealed that cellular RACK1 could interact with viral N protein to exert its function. We elaborated that RACK1 promoted PRRSV replication in Marc-145 cells through ERK1/2 activation. Our study provides new insights into regulating the innate antiviral immune responses during PRRSV infection and contributes to further understanding of the molecular mechanisms underlying PRRSV replication.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Linhagem Celular , Sistema de Sinalização das MAP Quinases , Síndrome Respiratória e Reprodutiva Suína/genética , RNA Interferente Pequeno/genética , Replicação Viral/genética
3.
Vet Microbiol ; 286: 109890, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857013

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is an important swine disease caused by infection of porcine reproductive and respiratory syndrome virus (PRRSV), which leads to huge loss in swine industry. How to effectively control PRRS is challenging. Long non-coding RNA (lncRNA) are key regulator of viral infections and anti-virus immunological responses, therefore, further understanding of lncRNAs will aid to identification of novel regulators of viral infections and better design of prevention and control strategies to viral infection related diseases and immune disorders. We demonstrated that PRRSV infection upregulated the expression of lncRNA LOC103222771 in Marc-145 cells and porcine alveolar macrophage cells (PAMs) and that LOC103222771 is mainly located in cytoplasm. Knockdown of LOC103222771 could inhibit the PRRSV infection in Marc-145 cells. RNA-seq analysis and subsequent validation revealed increased expression of Claudin-4 (CLDN4) in Marc-145 when LOC103222771 was specifically downregulated,suggesting that LOC103222771 might be an upstream regulator of CLDN4, an important component of tight junctions for establishment of the paracellular barrier that controls the flow of molecules in the intercellular space between epithelial cells. We and others showed that Downregulation of CLDN4 could boost the infection of PRRSV. Collectively, LOC103222771/CLDN4 signal axis might be a novel mechanism of PRRSV pathogenesis, implying a potential therapeutic target against PRRSV infection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Longo não Codificante , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , RNA Longo não Codificante/genética , Claudina-4 , Linhagem Celular , Replicação Viral/genética , Macrófagos Alveolares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa