Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Small ; 18(38): e2203061, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35986433

RESUMO

Zinc (Zn) metal possesses broad prospects as an anode for aqueous zinc-ion batteries (AZIBs) due to its considerable theoretical capacity of 820 mAh g-1 . However, the Zn anode suffers from dendrite growth and side reactions during Zn stripping/plating. Herein, a Prussian blue analog of copper hexacyanoferrate (CuHCF) with a 3D open structure and rich polar groups (CN) is coated on Zn foil as a solid-state electrolyte (SSE) protection layer to protect the Zn anode. The CuHCF protection layer possesses low activation energy of 26.49 kJ mol-1 , the high ionic conductivity of 7.6 mS cm-1 , and a large Zn2+ transference number of 0.74. Hence, the Zn@CuHCF||Zn@CuHCF symmetric cell delivers high cycling stability over 1800 h at 5 mA cm-2 , an excellent depth of discharge of 51.3%, and the accumulative discharge capacity over 3000 mAh cm-2 . In addition, the Zn//Ti@CuHCF asymmetric cell achieves the coulombic efficiency (CE) of 99.87% after 2000 cycles. More importantly, the Zn@CuHCF//V2 O5 full cell presents outstanding capacity retention of 87.6% at 10 A g-1 after 3000 cycles. This work develops a type of material to form an artificial protection layer for high-performance AZIBs.

2.
J Asthma ; 59(6): 1188-1194, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33863266

RESUMO

OBJECTIVE: Previous studies have reported a correlation between coronavirus disease-2019 (COVID-19) and asthma. However, data on whether asthma constitutes a risk factor for COVID-19 and the prevalence of asthma in COVID-19 cases still remain scant. Here, we interrogated and analyzed the association between COVID-19 and asthma. METHODS: In this study, we systematically searched PubMed, Embase, and Web of Science databases for studies published between January 1 and August 28, 2020. We included studies that reported the epidemiological and clinical features of COVID-19 and its prevalence in asthma patients. We excluded reviews, animal trials, single case reports, small case series and studies evaluating other coronavirus-related illnesses. Raw data from the studies were pooled into a meta-analysis. RESULTS: We analyzed findings from 18 studies, including asthma patients with COVID-19. The pooled prevalence of asthma in COVID-19 cases was 0.08 (95% CI, 0.06-0.11), with an overall I2 of 99.07%, p < 0.005. The data indicated that asthma did not increase the risk of developing severe COVID-19 (odds ratio [OR] 1.04 (95% CI, 0.75-1.46) p = 0.28; I2=20%). In addition, there was no significant difference in the incidence of asthma with age in COVID-19 infections [OR] 0.77(95% CI, 0.59-1.00) p = 0.24; I2=29%). CONCLUSION: Taken together, our data suggested that asthma is not a significant risk factor for the development of severe COVID-19.


Assuntos
Asma , COVID-19 , Asma/epidemiologia , COVID-19/epidemiologia , Humanos , Prevalência , Fatores de Risco , SARS-CoV-2
3.
BMC Psychiatry ; 22(1): 464, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831848

RESUMO

OBJECTIVES: Advance care planning (ACP) enables people to define goals and preferences for future medical treatment and care. Despite universal recognition of the importance of ACP for people with Alzheimer´s disease (AD) internationally, there is little support for its implementation in China. The viewpoint of family caregivers is crucial in making clinical decisions about AD. Therefore, it's critical to understand the family caregivers' perspectives on ACP in order to promote its practice among people with AD in China. METHODS: Seventeen family caregivers of people with AD were purposively selected in three communities in Guangzhou. Semi-structured interviews were conducted to collect data and the data were analyzed using the thematic analysis. RESULTS: Three main themes were extracted: ①Attitudes toward ACP including positive and negative attitudes; ②Social pressure influencing ACP decision; ③Behavioral willingness of the implementation of ACP. CONCLUSIONS: Attitudes, social pressure, and behavioral willingness characterized the behavioral intentions of family caregivers of people with Alzheimer's disease. It is recommended to strengthen efforts to publicity of advance care planning and promote legislation in China.


Assuntos
Planejamento Antecipado de Cuidados , Doença de Alzheimer , Cuidadores , Doença de Alzheimer/terapia , Tomada de Decisões , Família , Humanos , Pesquisa Qualitativa
4.
Ecotoxicol Environ Saf ; 189: 109955, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31759745

RESUMO

Plants can play important roles in overcoming selenium (Se) deficiency and Se toxicity in various regions of the world. Selenite (SeIV), selenate (SeVI), as well as Se nanoparticles (SeNPs) naturally formed through reduction of SeIV, are the three main Se species in the environment. The bioaccumulation and transformation of these Se species in plants still need more understanding. The aims of this study are to investigate the phytotoxicity, accumulation, and transformation of SeIV, SeVI and SeNPs in garlic, a relatively Se accumulative plant. The spatial distribution of Se in the roots were imaged using synchrotron radiation micro-focused X-ray fluorescence (SR-µXRF). The chemical forms of Se in different plant tissues were analyzed using synchrotron radiation X-ray absorption spectroscopy (SR-XAS). The results demonstrate that 1) SeNPs which has the lowest phytotoxicity is stable in water, but prone to be converted to organic Se species, such as C-Se-C (MeSeCys) upon uptake by root. 2) SeIV is prone to concentrate in the root and incorporated into C-Se-C (MeSeCys) and C-Se-R (SeCys) bonding forms; 3) SeVI with the lowest transformation probability to organic Se species has the highest phytotoxicity to plant, and is much easier to translocate from root to leaf than SeNPs and SeIV. The present work provides insights into potential impact of SeNPs, selenite and selenate on aquatic-plant ecosystems, and is beneficial for systematically understanding the Se accumulation and transformation in food chain.


Assuntos
Alho/metabolismo , Nanopartículas/metabolismo , Ácido Selênico/farmacocinética , Ácido Selenioso/farmacocinética , Selênio/farmacocinética , Selenito de Sódio/farmacocinética , Bioacumulação , Transporte Biológico , Biotransformação , Alho/efeitos dos fármacos , Hidroponia , Nanopartículas/toxicidade , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Ácido Selênico/toxicidade , Ácido Selenioso/toxicidade , Selênio/toxicidade , Selenito de Sódio/toxicidade , Espectroscopia por Absorção de Raios X
5.
J Colloid Interface Sci ; 662: 404-412, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359504

RESUMO

Vanadium dioxide-based materials have been proved to be promising cathodes for aqueous zinc ion batteries (AZIBs) due to their cost-effectiveness and high theoretical specific capacity; nevertheless, the low electronic conductivity and poor cycle stability restrict their application. Herein, hollow VO2 microspheres anchored on graphene oxide (H-VO2@GO) are synthesized via a facile simple hydrothermal reaction as high-performance cathodes for AZIBs. The hollow micromorphology of the material provides a large specific surface area and effectively alleviates the volume changes during cycling, while the anchoring of VO2 on graphene oxide greatly improves the electronic conductivity and inhibits the agglomeration and pulverization of the material. Resulting from the combination of unique micromorphology and graphene oxide anchoring, the as-prepared H-VO2@GO exhibits the impressive specific capacity of 400.1 mAh/g at 0.5 A/g and excellent cycling performance with 96.1 % of capacity retention after 1500 cycles at 10 A/g. This investigation provides a use reference for designing high-performance cathodes materials for AZIBs by optimizing the microstructure of electrode materials.

6.
ACS Omega ; 9(38): 39682-39695, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39346868

RESUMO

Phosphogypsum (PG) constitutes a form of solid byproduct emanating from the manufacturing process of wet-process phosphoric acid. The fabrication of one metric ton of wet-process phosphoric acid entails the generation of approximately five tons of phosphogypsum, a highly prolific and economically viable waste stream. If we can effectively solve the problem of poor hydrophobicity of phosphogypsum, it is possible to replace cement and other traditional cementitious materials. In this way, we can not only improve the utilization rate of phosphogypsum but also obtain significant economic and environmental benefits. In the present investigation, hydrophobic surface coatings were synthesized and applied onto the surface of α-hemihydrate phosphogypsum (α-HPG) utilizing sol-gel processing and impregnation techniques. After hydroxylating α-HPG with alkaline solution (OH-α-HPG), titanium dioxide nanoparticles (TiO2) hybridized with perfluorodecyltriethoxysilane (PFDTS) were grafted on its surface. The assessment of the hydrophobic properties of the coatings was conducted through water contact angle measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) analyses. The contact angle remained above 124.2° after strong acidic and alkaline immersion and 50 tape adhesion experiments with good chemical stability and durability, and the mechanism of surface hydrophobicity modification was discussed. The experimental outcomes demonstrated a notable increase in the hydroxyl group concentration on the α-HPG surface following hydroxylation, significantly enhancing the attachment rate of PFDTS and TiO2 onto the HPG surface. PFDTS and TiO2 can undergo chemical interaction with hydroxyl groups, facilitating their robust adsorption onto the surface of OH-α-HPG through chemisorption mechanisms. After bonding the OH-α-HPG surface with PFDTS and TiO2 via hydrogen bonding, the otherwise hydrophilic α-HPG surface acquired excellent hydrophobicity (OH-α-HPG-PT, contact angle (CA) = 146.7°). The surface modification of α-HPG through hydroxylation and hydrophobicity enhancement significantly augmented the compatibility and interfacial interplay between α-HPG and PT. This research successfully enhanced the hydrophobic properties of α-HPG, profoundly showcasing its immense potential within the construction industry and the realm of comprehensive solid waste utilization.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123845, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219611

RESUMO

A supramolecular fluorescence probe has been developed using a symmetrical tetramethyl cucurbit[6]uril (TMeQ[6]) and a styryl derivative (SPy) with a host-guest ratio of 2:1. The introduction of paraquat (PQ) competes with SPy for the TMeQ[6] cavity, resulting in fluorescent quenching. The addition of 17 common herbicides and ions had negligible effects on the fluorescence quenching, indicating that the 2TMeQ[6]/SPy complex exhibits excellent selectivity in detecting PQ. The detection limit was found to be 4.62 × 10-7 M. More importantly, the probe was engineered to detect paraquat in river water by examining post-treatment samples and noting alterations in fluorescence color. The red to blue (R/B) intensity ratio is subsequently calculated to ascertain the PQ concentration. Experimental trials conducted on river water samples yielded recovery rates between 98.21 % and 108 %, with a relative standard deviation of less than 5 %. By pairing this with a smartphone-based colorimetric analysis application, we can facilitate portable PQ detection, enabling efficient and convenient monitoring across various locations.

8.
J Colloid Interface Sci ; 652(Pt A): 440-448, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604055

RESUMO

Recently, vanadium dioxide (VO2) has been recognized as one of the most prospective cathodes for aqueous zinc ion batteries (AZIBs) for its high reversible specific capacity; nevertheless, its Zn2+ diffusion kinetics and cycling stability have not yet met expectations. Herein, Mo ions are introduced into VO2 to optimize the intrinsic electronic structure and micromorphology of VO2, achieving significantly enhanced zinc-ion storage. It is found that the substitution of Mo for V narrows the band gap of VO2 and thus enhances the conductivity of the material, while VO2 nanorods are transformed into VO2 nanoflowers which are self-assembled from ultra-thin nanosheets after the introduction of Mo, exposing much more active sites to enhance the migration kinetics of Zn2+. Consequently, the Mo-substituted VO2 (0.5-Mo-VO2) exhibits excellent electrochemical properties, presenting a high initial capacity of 494.5 mAh/g at 0.5 A/g, excellent rate capability of 336 mA h g-1 at 10 A/g and brilliant cycling stability with the capacity retention of 82% over 2000 cycles at 10 A/g. This work provides significant guidance for the design of advanced cathodes for AZIBs by optimizing the electronic structure and tailoring morphology of V-based materials.

9.
J Colloid Interface Sci ; 614: 205-213, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091148

RESUMO

Aqueous Zn-ion hybrid supercapacitors (ZHSCs) combine the high power density of supercapacitors with the high energy density of batteries. However, the growth of dendrite and spontaneous Zn corrosion damage the service life of ZHSCs and further seriously restrict their large-scale application in energy storage fields. Herein, we study the corrosion mechanism of Zn metal in ZnSO4 solution and report a method for the modification of Zn anode with zeolitic imidazolate framework-8 (ZIF-8) layer grown in-situ. The obtained ZIF-8 layer with hydrophobicity can not only inhibit Zn corrosion and induce Zn electroplating/peeling on the Zn surface, but also promote uniform deposition of Zn during charge/discharge processes. As a result, the prepared dendrite-free Zn electrode shows low polarization (89.0 mV at 10 mA cm-2) and high cycling stability (over 800 h at 10 mA cm-2), and the developed ZHSC maintains a high capacity retention of 96% after 13,000 cycles at 5 A g-1. Furthermore, a solar power supply system is assembled by the ZHSC and monocrystalline silicon plates to certify the utility of the device, and it can light a LED successfully. This study provides a simple and inexpensive strategy to manipulate the Zn electrodeposition behavior from dendrites to non-dendritic structures, which builds a way for the development of practical ZHSCs with mild electrolytes.

10.
Transl Pediatr ; 10(6): 1658-1667, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34295780

RESUMO

BACKGROUND: Citrin deficiency (CD) is an autosomal recessive disease resulting from biallelic mutations of the SLC25A13 gene. This study aimed to investigate the molecular epidemiological features of CD in the Guangdong and Shaanxi provinces of China. METHODS: A total of 3,409 peripheral blood samples from Guangdong and 2,746 such samples from Shaanxi province were collected. Four prevalent SLC25A13 mutations NG_012247.2 (NM_014251.3): c.852_855del, c.1638_1660dup, c.615+5G>A, and c.1751-5_1751-4ins(2684) were screened by using the conventional polymerase chain reaction (PCR)/PCR-restriction fragment length polymorphism and newly-developed multiplex PCR methods, respectively. The mutated SLC25A13 allele frequencies, carrier frequencies, and CD morbidity rates were calculated and then compared with the Chi-square and Fisher's exact tests. RESULTS: The mutations were detected in 68 out of 6,818 SLC25A13 alleles in Guangdong and 29 out of 5,492 alleles in the Shaanxi population. The carrier frequencies were subsequently calculated to be 1/51 and 1/95, while the CD morbidity rates were 1/10,053 and 1/35,865, in the 2 populations, respectively. When compared with the Shaanxi population, Guangdong exhibited a higher frequency of mutated SLC25A13 allele (68/6,818 vs. 29/5,492, χ2=8.570, P=0.003) in general, with higher c.852_855del (54/6,818 vs. 13/5,492, χ2=17.328, P=0.000) but lower c.1751-5_1751 -4ins(2684) (2/6,818 vs. 9/5,492, P=0.015) allele frequencies. The distribution of c.615+5G>A and c.1638_1660dup between the 2 provinces, as well as all 4 prevalent mutations among different geographic regions within the 2 provinces, did not differed significantly. CONCLUSIONS: Our findings depicted the CD molecular epidemiological features in Guangdong and Shaanxi populations, providing preliminary but significant laboratory evidences for the subsequent CD diagnosis and management in the 2 provinces of mainland China.

11.
Virus Res ; 237: 27-36, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28506791

RESUMO

Enterovirus71(EV71), the etiological agent of hand-foot-and-mouth disease, has increasingly become a public health challenge around the world. Type I interferons (IFNs) are an important family of cytokines that regulate innate and adaptive immune responses to pathogens.These pathways are tightly regulated by the host to prevent an inappropriate cellular response, but viruses can modulate these pathways to proliferate and spread. In this study, we demonstrated that EV71 evades the immune surveillance system to proliferate by activating microRNA-21. We demonstrated that EV71 infection upregulates miR-21, which in turn suppresses EV71-triggered type I IFN production, thus promoting EV71 replication. Furthermore, we demonstrated that miR-21 targets the myeloid differentiation factor 88(MyD88) and interleukin-1 receptor-associated kinase 1(IRAK1), which are involved in EV71-induced type I IFN production.


Assuntos
Enterovirus Humano A/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , MicroRNAs/biossíntese , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Linhagem Celular , Regulação da Expressão Gênica , Humanos
12.
Oncol Rep ; 35(6): 3586-92, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27109588

RESUMO

Lysine-specific demethylase 1 (LSD1) has been implicated in the process of tumor progression at various steps, but its role in epithelial-messenchymal transition (EMT) and the migration of ovarian cancer cells remains obscure. In this study, we demonstrated the effect of LSD1 on ovarian cancer cell migration and the regulatory role of LSD1 in the expression of EMT markers. Inhibition of LSD1 expression impaired the migration and invasion of HO8910 ovarian cancer cells. In contrast, overexpression of LSD1 enhanced the cell migration and invasion of HO8910 cells. Mechanistic analyses showed that LSD1 promoted cell migration through induction of N-cadherin, vimentin, MMP-2 and inhibition of E-cadherin. Furthermore, LSD1 interacted with the promoter of E-cadherin and demethylated histone H3 lysine 4 (H3K4) at this region, downregulated E-cadherin expression, and consequently enhanced ovarian cancer cell migration. These data indicate that LSD1 acts as an epigenetic regulator of EMT and contributes to the metastasis of ovarian cancer.


Assuntos
Movimento Celular/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal/genética , Histona Desmetilases/genética , Neoplasias Ovarianas/patologia , Caderinas/biossíntese , Caderinas/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Invasividade Neoplásica/genética , Neoplasias Ovarianas/genética
13.
Sci Rep ; 5: 15344, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26489763

RESUMO

Epigenetic abnormalities play a vital role in the progression of ovarian cancer. Lysine-specific demethylase 1 (LSD1/KDM1A) acts as an epigenetic regulator and is overexpressed in ovarian tumors. However, the upstream regulator of LSD1 expression in this cancer remains elusive. Here, we show that epidermal growth factor (EGF) signaling upregulates LSD1 protein levels in SKOV3 and HO8910 ovarian cancer cells overexpressing both LSD1 and the EGF receptor. This effect is correlated with a decrease in the dimethylation of H3K4, a major substrate of LSD1, in an LSD1-dependent manner. We also show that inhibition of PI3K/AKT, but not MEK, abolishes the EGF-induced upregulation of LSD1 and cell migration, indicating that the PI3K/PDK1/AKT pathway mediates the EGF-induced expression of LSD1 and cell migration. Significantly, LSD1 knockdown or inhibition of LSD1 activity impairs both intrinsic and EGF-induced cell migration in SKOV3 and HO8910 cells. These results highlight a novel mechanism regulating LSD1 expression and identify LSD1 as a promising therapeutic target for treating metastatic ovarian cancer driven by EGF signaling.


Assuntos
Movimento Celular/genética , Receptores ErbB/biossíntese , Histona Desmetilases/genética , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Histona Desmetilases/metabolismo , Humanos , Neoplasias Ovarianas/patologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa