Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Comput Assist Tomogr ; 40(4): 663-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27096399

RESUMO

PURPOSE: A research photon-counting computed tomography (CT) system that consists of an energy-integrating detector (EID) and a photon-counting detector (PCD) was installed in our laboratory. The scanning fields of view of the EID and PCD at the isocenter are 500 and 275 mm, respectively. When objects are larger than the PCD scanning field of view, a data-completion scan (DCS) using the EID subsystem is needed to avoid truncation artifacts in PCD images. The goals of this work were to (1) find the impact of a DCS on noise of PCD images and (2) determine the lowest possible dose for a DCS such that truncation artifacts are negligible in PCD images. METHODS: First, 2 semianthropomorphic abdomen phantoms were scanned on the PCD subsystem. For each PCD scan, we acquired 1 DCS with the maximum effective mAs and 5 with lower effective mAs values. The PCD image reconstructed using the maximum effective mAs was considered as the reference image, and those using the lower effective mAs as the test images. The PCD image reconstructed without a DCS was considered the baseline image. Each PCD image was assessed in terms of noise and CT number uniformity; the results were compared among the baseline, test, and reference images. Finally, the impact of a DCS on PCD image quality was qualitatively assessed for other body regions using an anthropomorphic torso phantom. RESULTS: The DCS had a negligible impact on the noise magnitude in the PCD images. The PCD images with the minimum available dose (CTDIvol < 2 mGy) showed greatly enhanced CT number uniformity compared with the baseline images without noticeable truncation artifacts. Further increasing the effective mAs of a DCS did not yield noticeable improvement in CT number uniformity. CONCLUSIONS: A DCS using the minimum available dose had negligible effect on image noise and was sufficient to maintain satisfactory CT number uniformity for the PCD scans.


Assuntos
Exposição à Radiação/análise , Exposição à Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Imagem Corporal Total/instrumentação , Contagem Corporal Total/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Imagens de Fantasmas , Fótons , Doses de Radiação , Proteção Radiológica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos , Imagem Corporal Total/métodos , Contagem Corporal Total/métodos
2.
Radiology ; 276(2): 499-506, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25811326

RESUMO

PURPOSE: To determine the dose reduction that could be achieved without degrading low-contrast spatial resolution (LCR) performance for two commercial iterative reconstruction (IR) techniques, each evaluated at two strengths with many repeated scans. MATERIALS AND METHODS: Two scanner models were used to image the American College of Radiology (ACR) CT accreditation phantom LCR section at volume CT dose indexes of 8, 12, and 16 mGy. Images were reconstructed by using filtered back projection (FBP) and two manufacturers' IR techniques, each at two strengths (moderate and strong). Data acquisition and reconstruction were repeated 100 times for each, yielding 1800 images. Three diagnostic medical physicists reviewed the LCR images in a blinded fashion and graded the visibility of four 6-mm rods with a six-point scale. Noninferiority and inferiority-superiority analyses were used to interpret the differences in LCR relative to FBP images acquired at 16 mGy. RESULTS: LCR decreased with decreasing dose for all reconstructions. Relative to FBP and full dose, 25%-50% dose reductions resulted in inferior LCR for vendors 1 and 2 for FBP and 25% dose reductions resulted in inferior and equivalent performance for vendor 1 and equivalent and superior performance for vendor 2 at moderate and strong IR settings, respectively. When dose was reduced by 50%, both IR techniques resulted in inferior LCR at both strength settings. CONCLUSION: For radiation dose reductions of 25% or more, the ability to resolve the four 6-mm rods in the ACR CT accreditation phantom can be lost.


Assuntos
Processamento de Imagem Assistida por Computador , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
3.
Radiology ; 276(2): 465-78, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26020436

RESUMO

PURPOSE: To determine if lower-dose computed tomographic (CT) scans obtained with adaptive image-based noise reduction (adaptive nonlocal means [ANLM]) or iterative reconstruction (sinogram-affirmed iterative reconstruction [SAFIRE]) result in reduced observer performance in the detection of malignant hepatic nodules and masses compared with routine-dose scans obtained with filtered back projection (FBP). MATERIALS AND METHODS: This study was approved by the institutional review board and was compliant with HIPAA. Informed consent was obtained from patients for the retrospective use of medical records for research purposes. CT projection data from 33 abdominal and 27 liver or pancreas CT examinations were collected (median volume CT dose index, 13.8 and 24.0 mGy, respectively). Hepatic malignancy was defined by progression or regression or with histopathologic findings. Lower-dose data were created by using a validated noise insertion method (10.4 mGy for abdominal CT and 14.6 mGy for liver or pancreas CT) and images reconstructed with FBP, ANLM, and SAFIRE. Four readers evaluated routine-dose FBP images and all lower-dose images, circumscribing liver lesions and selecting diagnosis. The jackknife free-response receiver operating characteristic figure of merit (FOM) was calculated on a per-malignant nodule or per-mass basis. Noninferiority was defined by the lower limit of the 95% confidence interval (CI) of the difference between lower-dose and routine-dose FOMs being less than -0.10. RESULTS: Twenty-nine patients had 62 malignant hepatic nodules and masses. Estimated FOM differences between lower-dose FBP and lower-dose ANLM versus routine-dose FBP were noninferior (difference: -0.041 [95% CI: -0.090, 0.009] and -0.003 [95% CI: -0.052, 0.047], respectively). In patients with dedicated liver scans, lower-dose ANLM images were noninferior (difference: +0.015 [95% CI: -0.077, 0.106]), whereas lower-dose FBP images were not (difference -0.049 [95% CI: -0.140, 0.043]). In 37 patients with SAFIRE reconstructions, the three lower-dose alternatives were found to be noninferior to the routine-dose FBP. CONCLUSION: At moderate levels of dose reduction, lower-dose FBP images without ANLM or SAFIRE were noninferior to routine-dose images for abdominal CT but not for liver or pancreas CT.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas/classificação , Neoplasias Hepáticas/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
AJR Am J Roentgenol ; 205(6): 1203-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26587926

RESUMO

OBJECTIVE: The purpose of this phantom study was to determine the utility of a third-generation dual-source CT scanner with increased dual-energy spectral separation in differentiating urinary stone composition. MATERIALS AND METHODS: Eighty-seven urinary stones from humans were scanned in 35-, 40-, 45-, and 50-cm wide anthropomorphic phantoms with a third-generation dual-source scanner (system A) with a high-energy beam of 150 kV plus 0.6-mm tin filtration (Sn). The low-energy data were acquired at 70, 80, 90, and 100 kV. A second-generation dual-source scanner (system B) was used to acquire data at 140 kV plus 0.4-mm Sn for the high-energy and 80 or 100 kV for the low-energy images. Volume CT dose index was matched for a given phantom size. CT number ratios were calculated and used to differentiate uric acid from non-uric acid stones and oxalate from apatite stones in an ROC analysis. RESULTS: The area under the curve (AUC) of the ROC curve for uric acid versus non-uric acid stones increased for large phantoms. For example, for imaging of the 45-cm wide phantom with system A at the 100- and 150-kV Sn low- and high-energy combination, the AUC was 0.99, whereas for system B at the 100- and 140-kV Sn combination, the AUC was 0.86. At each phantom size and for all energy combinations, the AUC values for oxalate versus apatite stones were higher for system A than they were for any energy combination for system B. CONCLUSION: Compared with use of second-generation dual-source CT, use of third-generation dual-source CT at the energy combination of 100 and 150 kV Sn improved classification of urinary stones across a wide range of phantom sizes and increased the ability to differentiate oxalate from apatite stones.


Assuntos
Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Cálculos Urinários/química , Cálculos Urinários/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador
5.
J Comput Assist Tomogr ; 39(4): 619-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853774

RESUMO

OBJECTIVE: To compare contrast-to-noise ratio (CNR) thresholds with visual assessment of low-contrast resolution (LCR) in filtered back projection (FBP) and iteratively reconstructed (IR) computed tomographic (CT) images. METHODS: American College of Radiology (ACR) CT accreditation phantom LCR images were acquired at CTDIvol levels of 8, 12, and 16 mGy using 2 scanner models and reconstructed using one FBP and 2 IR kernels. Acquisitions were repeated 100 times. Three board-certified medical physicists blindly reviewed the LCR section images. Pass-percentage rates (PPRs) using previous and current ACR CT accreditation criteria were compared. RESULTS: Observer PPRs for FBP images were less than 32%. For IR images, 5 of 18 settings/dose/model configurations had PPRs greater than 32% (maximum 76.3%). For CNR evaluation of FBP images, PPRs for 15 configurations were greater than 70%. For IR images, all PPRs were at least 96%. CONCLUSIONS: The CNR threshold used by the ACR CT accreditation program yields higher PPRs than visual assessment of LCR, potentially resulting in lower-quality images passing the ACR CNR criteria.


Assuntos
Acreditação/métodos , Processamento de Imagem Assistida por Computador/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído , Sociedades Médicas , Estados Unidos
6.
J Med Imaging (Bellingham) ; 7(5): 053501, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33033732

RESUMO

Purpose: Conventional stenosis quantification from single-energy computed tomography (SECT) images relies on segmentation of lumen boundaries, which suffers from partial volume averaging and calcium blooming effects. We present and evaluate a method for quantifying percent area stenosis using multienergy CT (MECT) images. Approach: We utilize material decomposition of MECT images to measure stenosis based on the ratio of iodine mass between vessel locations with and without a stenosis, thereby eliminating the requirement for segmentation of iodinated lumen. The method was first assessed using simulated MECT images created with different spatial resolutions. To experimentally assess this method, four phantoms with different stenosis severity (30% to 51%), vessel diameters (5.5 to 14 mm), and calcification densities (700 to 1100 mgHA / cc ) were fabricated. Conventional SECT images were acquired using a commercial CT system and were analyzed with commercial software. MECT images were acquired using a commercial dual-energy CT (DECT) system and also from a research photon-counting detector CT (PCD-CT) system. Three-material-decomposition was performed on MECT data, and iodine density maps were used to quantify stenosis. Clinical radiation doses were used for all data acquisitions. Results: Computer simulation verified that this method reduced partial volume and blooming effects, resulting in consistent stenosis measurements. Phantom experiments showed accurate and reproducible stenosis measurements from MECT images. For DECT and two-threshold PCD-CT images, the estimation errors were 4.0% to 7.0%, 2.0% to 9.0%, 10.0% to 18.0%, and - 1.0 % to - 5.0 % (ground truth: 51%, 51%, 51%, and 30%). For four-threshold PCD-CT images, the errors were 1.0% to 3.0%, 4.0% to 6.0%, - 1.0 % to 9.0%, and 0.0% to 6.0%. Errors using SECT were much larger, ranging from 4.4% to 46%, and were especially worse in the presence of dense calcifications. Conclusions: The proposed approach was shown to be insensitive to acquisition parameters, demonstrating the potential to improve the accuracy and precision of stenosis measurements in clinical practice.

7.
J Med Imaging (Bellingham) ; 5(3): 033502, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30065949

RESUMO

Energy-resolved photon-counting-detector CT (PCD-CT) is promising for material decomposition with multiple contrast agents using two or more energy bins. However, corrections for nonidealities of PCDs are required, which are still active research topics. In addition, PCD-CT is also likely to have a very high cost due to the current lack of mass production capabilities. We proposed an alternative approach to perform multienergy CT (MECT), which is achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a "twin-beam" design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the noise and accuracy of material decomposition for multiple contrast mixtures using both triple- and quadruple-beam configurations, compared with the performance on a PCD-CT platform. The results demonstrated that the image quality and dose efficiency of the triple-beam configuration in the proposed MECT technique were comparable to that in PCD-CT. The proposed technique can be readily implemented on a dual-source scanner, which may allow material decomposition of multiple contrast agents to be performed on clinical CT scanners with energy-integrating detectors.

8.
Med Phys ; 44(5): 1610-1623, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28236645

RESUMO

PURPOSE: To develop and evaluate an image-domain noise reduction method for multi-energy CT (MECT) data. METHODS: Multi-Energy Non-Local Means (MENLM) is a technique that uses the redundant information in MECT images to achieve noise reduction. In this method, spatio-spectral features are used to determine the similarity between pixels, making the similarity evaluation more robust to image noise. The performance of this MENLM filter was tested on images acquired on a whole-body research photon counting CT system. The impact of filtering on image quality was quantitatively evaluated in phantom studies in terms of image noise level (standard deviation of pixel values), noise power spectrum (NPS), in-plane and cross-plane spatial resolution, CT number accuracy, material decomposition performance, and subjective low-contrast spatial resolution using the American College of Radiology (ACR) CT accreditation phantom. Clinical feasibility was assessed by performing MENLM on contrast-enhanced swine images and unenhanced cadaver head images using clinically relevant doses and dose rates. RESULTS: The phantom studies demonstrated that the MENLM filter reduced noise substantially and still preserved the shape and peak frequency of the NPS. With 80% noise reduction, MENLM filtering caused no degradation of high-contrast spatial resolution, as illustrated by the modulation transfer function (MTF) and slice sensitivity profile (SSP). CT number accuracy was also maintained for all energy channels, demonstrating that energy resolution was not affected by filtering. Material decomposition performance was improved with MENLM filtering. The subjective evaluation using the ACR phantom demonstrated an improvement in low-contrast performance. MENLM achieved effective noise reduction in both contrast-enhanced swine images and unenhanced cadaver head images, resulting in improved detection of subtle vascular structures and the differentiation of white/gray matter. CONCLUSION: In MECT, MENLM achieved around 80% noise reduction and greatly improved material decomposition performance and the detection of subtle anatomical/low-contrast features while maintaining spatial and energy resolution. MENLM filtering may improve diagnostic or functional analysis accuracy and facilitate radiation dose and contrast media reduction for MECT.


Assuntos
Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Algoritmos , Animais , Humanos , Razão Sinal-Ruído , Suínos
9.
Med Phys ; 44(5): 1655-1660, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28241103

RESUMO

PURPOSE: To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. METHODS: A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. RESULTS: The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. CONCLUSION: A framework was developed and validated for the creation of digital objects of known mineral composition, and for inserting the digital objects into projection data from a commercial dual-source, dual-energy CT scanner. Among other applications, it will allow a systematic investigation of the impact of scan and reconstruction parameters on kidney stone dual-energy properties under rigorously controlled conditions.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Tomógrafos Computadorizados , Raios X
10.
J Med Imaging (Bellingham) ; 4(2): 023505, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28653013

RESUMO

Photon-counting detector CT has a large number of acquisition parameters that require optimization, particularly the energy threshold configurations. Fast and accurate estimation of both signal and noise in photon-counting CT (PCCT) images can facilitate such optimization. Using the detector response function of a research PCCT system, we derived mathematical models for both signal and noise estimation, taking into account beam spectrum and filtration, object attenuation, water beam hardening, detector response, radiation dose, energy thresholds, and the propagation of noise. To determine the absolute noise value, a noise lookup table (LUT) for all available energy thresholds was acquired using a number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuations. Validation of the estimation algorithms was performed on a whole-body research PCCT system using semianthropomorphic water phantoms and solutions of calcium and iodine. Clinical feasibility of noise estimation was assessed with scans of a cadaver head and a living swine. The algorithms achieved accurate estimation of both signal and noise for a variety of scanning parameter combinations. Maximum discrepancies were below 15%, while most errors were below 5%.

11.
Abdom Radiol (NY) ; 42(5): 1485-1492, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28025654

RESUMO

PURPOSE: The aim of this study was to assess the effect of denoising on objective heterogeneity scores and its diagnostic capability for the diagnosis of angiomyolipoma (AML) and renal cell carcinoma (RCC). MATERIALS AND METHODS: A total of 158 resected renal masses ≤4 cm [98 clear cell (cc) RCCs, 36 papillary (pap)-RCCs, and 24 AMLs] from 139 patients were evaluated. A representative contrast-enhanced computed tomography (CT) image for each mass was selected by a genitourinary radiologist. A largest possible region of interest was drawn on each mass by the radiologist, from which three objective heterogeneity indices were calculated: standard deviation (SD), entropy (Ent), and uniformity (Uni). Objective heterogeneity indices were also calculated after images were processed with a denoising algorithm (non-local means) at three strengths: weak, medium, and strong. Two genitourinary radiologists also subjectively scored each mass independently using a three-point scale (1-3; with 1 the least and 3 the most heterogeneous), which were added to represent the final subjective heterogeneity score of each mass. Heterogeneity scores were compared among mass types, and area under the ROC curve (AUC) was calculated. RESULTS: For all heterogeneity indices, cc-RCC was significantly more heterogeneous than pap-RCC and AML (p < 0.001), but no significant difference was found between pap-RCC and AML (p > 0.01). For cc-RCC and pap-RCC differentiation, AUCs were 0.91, 0.81, 0.78, and 0.78 for the subjective score, SD, Ent, and Uni, respectively, using original images. The corresponding AUC values were 0.84, 0.74, 0.79, and 0.80 for differentiation of AML and cc-RCC. Noise reduction at weak setting improves AUC values by 0.03, 0.05, and 0.05 for SD, entropy, and uniformity for differentiation of cc-RCC from pap-RCC. Further increase of filtering strength did not improve AUC values. For differentiation of AML vs. cc-RCC, the AUC values stayed relatively flat using the noise reduction technique at different strengths for all three indices. CONCLUSIONS: Both subjective and objective heterogeneity indices can differentiate cc-RCC from pap-RCC and AML. Noise reduction improved differentiation of cc-RCC from pap-RCC, but not differentiation of AML from cc-RCC.


Assuntos
Angiomiolipoma/diagnóstico por imagem , Carcinoma de Células Renais/diagnóstico por imagem , Neoplasias Renais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Angiomiolipoma/patologia , Angiomiolipoma/cirurgia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Meios de Contraste , Diagnóstico Diferencial , Feminino , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Masculino , Pessoa de Meia-Idade , Nefrectomia , Estudos Retrospectivos
12.
Phys Med Biol ; 61(18): 6707-6732, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27551878

RESUMO

Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.


Assuntos
Algoritmos , Compressão de Dados/métodos , Cabeça/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X/métodos , Animais , Simulação por Computador , Feminino , Suínos
13.
Artigo em Inglês | MEDLINE | ID: mdl-27346908

RESUMO

Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configurations. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semi-anthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT.

14.
J Med Imaging (Bellingham) ; 3(4): 043503, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28018936

RESUMO

Photon counting detector (PCD)-based computed tomography (CT) is an emerging imaging technique. Compared to conventional energy integrating detector (EID)-based CT, PCD-CT is able to exclude electronic noise that may severely impair image quality at low photon counts. This work focused on comparing the noise performance at low doses between the PCD and EID subsystems of a whole-body research PCD-CT scanner, both qualitatively and quantitatively. An anthropomorphic thorax phantom was scanned, and images of the shoulder portion were reconstructed. The images were visually and quantitatively compared between the two subsystems in terms of streak artifacts, an indicator of the impact of electronic noise. Furthermore, a torso-shaped water phantom was scanned using a range of tube currents. The product of the noise and the square root of the tube current was calculated, normalized, and compared between the EID and PCD subsystems. Visual assessment of the thorax phantom showed that electronic noise had a noticeably stronger degrading impact in the EID images than in the PCD images. The quantitative results indicated that in low-dose situations, electronic noise had a noticeable impact (up to a 5.8% increase in magnitude relative to quantum noise) on the EID images, but negligible impact on the PCD images.

15.
J Med Imaging (Bellingham) ; 3(4): 043504, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28042589

RESUMO

An ultrahigh-resolution (UHR) data collection mode was enabled on a whole-body, research photon counting detector (PCD) computed tomography system. In this mode, 64 rows of [Formula: see text] detector pixels were used, which corresponded to a pixel size of [Formula: see text] at the isocenter. Spatial resolution and image noise were quantitatively assessed for the UHR PCD scan mode, as well as for a commercially available UHR scan mode that uses an energy-integrating detector (EID) and a set of comb filters to decrease the effective detector size. Images of an anthropomorphic lung phantom, cadaveric swine lung, swine heart specimen, and cadaveric human temporal bone were qualitatively assessed. Nearly equivalent spatial resolution was demonstrated by the modulation transfer function measurements: 15.3 and [Formula: see text] spatial frequencies were achieved at 10% and 2% modulation, respectively, for the PCD system and 14.2 and [Formula: see text] for the EID system. Noise was 29% lower in the PCD UHR images compared to the EID UHR images, representing a potential dose savings of 50% for equivalent image noise. PCD UHR images from the anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures.

16.
Phys Med Biol ; 61(4): 1572-95, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26835839

RESUMO

This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x-ray photon flux.


Assuntos
Fótons , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/métodos , Tomografia Computadorizada por Raios X/instrumentação , Raios X
17.
Invest Radiol ; 51(7): 421-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26818529

RESUMO

OBJECTIVES: The purpose of this work was to measure and compare the iodine contrast-to-noise ratio (CNR) between a commercial energy-integrating detector (EID) computed tomography (CT) system and a photon-counting detector (PCD) CT scanner capable of human imaging at clinical dose rates, as well as to determine clinical feasibility using human cadavers. MATERIALS AND METHODS: A research dual-source PCD-CT scanner was used, where the "A" tube/detector subsystem used an EID and the "B" tube/detector subsystem used a PCD. Iodine CNR was measured in 4 anthropomorphic phantoms, simulating 4 patient sizes, at 4 tube potential settings. After biospecimen committee approval, PCD scans were performed on a fresh-frozen human head and a whole-body cadaver using clinical dose rates. Scans were repeated using the EID and identical parameters, and qualitative side-by-side comparisons were performed. RESULTS: For the same photon fluence, phantom measurements demonstrated a mean increase in CNR of 11%, 23%, 31%, 38% for the PCD system, relative to the EID system, at 80, 100, 120, and 140 kV, respectively. Photon-counting detector CT additionally provided energy-selective imaging, where low- and high-energy images reflected the energy dependence of the iodine signal. Photon-counting detector images of cadaveric anatomy demonstrated decreased beam hardening and calcium blooming in the high-energy bin images and increased contrast in the low-energy bins images relative to the EID images. Threshold-based PCD images were qualitatively deemed equivalent in other aspects. CONCLUSIONS: The evaluated research PCD-CT system was capable of clinical levels of image quality at clinical dose rates. It further provided improved CNR relative to state-of-the-art EID-CT. The energy-selective bin images provide further opportunity for dual-energy and multienergy analyses.


Assuntos
Meios de Contraste , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Cadáver , Criança , Feminino , Humanos , Recém-Nascido , Iodo , Ruído , Fótons , Tomografia Computadorizada por Raios X/instrumentação
18.
Med Phys ; 43(1): 347, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745928

RESUMO

PURPOSE: To develop a noise reduction method for time resolved CT data, especially those with significant patient motion. METHODS: PArtial TEmporal Nonlocal (PATEN) means is a technique that uses the redundant information in time-resolved CT data to achieve noise reduction. In this method, partial temporal profiles are used to determine the similarity (or weight) between pixels, and the similarity search makes use of both spatial and temporal information, providing robustness to patient motion. The performance of the PATEN filter was qualitatively and quantitatively evaluated with nine cardiac CT patient data sets and five CT brain perfusion patient data sets. In cardiac CT, PATEN was applied to reduce noise primarily in the reduced-dose phases created with electrocardiographic (ECG) pulsing. CT number accuracy and noise reduction were evaluated in both full-dose phases and reduced-dose phases between filtered backprojection images and PATEN filtered images. In CT brain perfusion, simulated quarter dose data were obtained by adding noise to the raw data of a routine dose scan. PATEN was applied to the simulated low-dose images. Image noise, time-intensity profile accuracy, and perfusion parameter maps were compared among low-dose, low-dose+PATEN filter, and full-dose images. The noise reduction performance of PATEN was compared to a previously proposed noise reduction method, time-intensity profile similarity (TIPS) bilateral filtering. RESULTS: In 4D cardiac CT, after PATEN filtering, the image noise in the reduced-dose phases was greatly reduced, making anatomical structures easier to identify. The mean decreases in noise values between the original and PATEN images were 11.0% and 53.8% for the full and reduced-dose phases of the cardiac cycle, respectively. TIPS could not achieve effective noise reduction. In CT brain perfusion, PATEN achieved a 55.8%-66.3% decrease in image noise in the low-dose images. The contrast to noise ratio in the axial images was increased and was comparable to the full-dose images. Differentiation of anatomical structure in the PATEN images and corresponding quantitative perfusion parameter maps were preferred by two neuroradiologists compared to the simulated low-dose and TIPS results. The mean perfusion parameters calculated from the PATEN images agreed with those determined from full-dose data to within 12% and 20% for normal and diseased regions. CONCLUSIONS: In ECG-gated cardiac CT, where the dose had already been reduced by a factor of 5 in the reduced-dose phases, PATEN achieved a 53.8% noise reduction, which decreased the noise level in the reduced-dose phases close to that of the full-dose phases. In CT brain perfusion, a fourfold dose reduction was demonstrated to be achievable by PATEN filtering, which improved quantitative perfusion analysis. PATEN can be used to effectively reduce image noise to improve image quality, even when significant motion occurred between temporal samples.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Razão Sinal-Ruído , Algoritmos , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Estudos de Viabilidade , Coração/diagnóstico por imagem , Humanos , Doses de Radiação , Fatores de Tempo
19.
Artigo em Inglês | MEDLINE | ID: mdl-26229220

RESUMO

Photon-counting CT (PCCT) potentially offers both improved dose efficiency and material decomposition capabilities relative to CT systems using energy integrating detectors. With respect to material decomposition, both projection-based and image-based methods have been proposed, most of which require accurate a priori information regarding the shape of the x-ray spectra and the response of the detectors. Additionally, projection-based methods require access to projection data. These data can be difficult to obtain, since spectra, detector response, and projection data formats are proprietary information. Further, some published image-based, 3-material decomposition methods require a volume conservation assumption, which is often violated in solutions. We have developed an image-based material decomposition method that can overcome those limitations. We introduced a general condition on volume constraint that does not require the volume to be conserved in a mixture. An empirical calibration can be performed with various concentrations of basis materials. The material decomposition method was applied to images acquired from a prototype whole-body PCCT scanner. The results showed good agreement between the estimation and known mass concentration values. Factors affecting the performance of material decomposition, such as energy threshold configuration and volume conservation constraint, were also investigated. Changes in accuracy of the mass concentration estimates were demonstrated for four different energy configurations and when volume conservation was assumed.

20.
Med Phys ; 41(1): 011908, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24387516

RESUMO

PURPOSE: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. METHODS: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. RESULTS: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the shape and peak frequency of the noise power spectrum better than commercial smoothing kernels, and indicate that the spatial resolution at low contrast levels is not significantly degraded. Both the subjective evaluation using the ACR phantom and the objective evaluation on a low-contrast detection task using a CHO model observer demonstrate an improvement on low-contrast performance. The GPU implementation can process and transfer 300 slice images within 5 min. On patient data, the adaptive NLM algorithm provides more effective denoising of CT data throughout a volume than standard NLM, and may allow significant lowering of radiation dose. After a two week pilot study of lower dose CT urography and CT enterography exams, both GI and GU radiology groups elected to proceed with permanent implementation of adaptive NLM in their GI and GU CT practices. CONCLUSIONS: This work describes and validates a computationally efficient technique for noise map estimation directly from CT images, and an adaptive NLM filtering based on this noise map, on phantom and patient data. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with clinical workflow. The adaptive NLM algorithm provides effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Gráficos por Computador , Imagens de Fantasmas , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa