Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(3): 694-712, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988560

RESUMO

Xyloglucan, an important hemicellulose, plays a crucial role in maintaining cell wall structure and cell elongation. However, the effects of xyloglucan on cotton fiber development are not well understood. GhMUR3 encodes a xyloglucan galactosyltransferase that is essential for xyloglucan synthesis and is highly expressed during fiber elongation. In this study, we report that GhMUR3 participates in cotton fiber development under the regulation of GhMYB30. Overexpression GhMUR3 affects the fiber elongation and cell wall thickening. Transcriptome showed that the expression of genes involved in secondary cell wall synthesis was prematurely activated in OE-MUR3 lines. In addition, GhMYB30 was identified as a key regulator of GhMUR3 by Y1H, Dual-Luc, and electrophoretic mobility shift assay (EMSA) assays. GhMYB30 directly bound the GhMUR3 promoter and activated GhMUR3 expression. Furthermore, DAP-seq of GhMYB30 was performed to identify its target genes in the whole genome. The results showed that many target genes were associated with fiber development, including cell wall synthesis-related genes, BR-related genes, reactive oxygen species pathway genes, and VLCFA synthesis genes. It was demonstrated that GhMYB30 may regulate fiber development through multiple pathways. Additionally, GhMYB46 was confirmed to be a target gene of GhMYB30 by EMSA, and GhMYB46 was significantly increased in GhMYB30-silenced lines, indicating that GhMYB30 inhibited GhMYB46 expression. Overall, these results revealed that GhMUR3 under the regulation of GhMYB30 and plays an essential role in cotton fiber elongation and secondary wall thickening. Additionally, GhMYB30 plays an important role in the regulation of fiber development and regulates fiber secondary wall synthesis by inhibiting the expression of GhMYB46.


Assuntos
Fibra de Algodão , Genes de Plantas , Transcriptoma , Metabolismo dos Carboidratos , Gossypium/genética , Regulação da Expressão Gênica de Plantas , Parede Celular/metabolismo
2.
BMC Genomics ; 24(1): 467, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596513

RESUMO

BACKGROUND: Phloem protein 2 (PP2) proteins play a vital role in the Phloem-based defense (PBD) and participate in many abiotic and biotic stress. However, research on PP2 proteins in cotton is still lacking. RESULTS: A total of 25, 23, 43, and 47 PP2 genes were comprehensively identified and characterized in G.arboretum, G.raimondii, G.barbadense, and G.hirsutum. The whole genome duplication (WGD) and allopolyploidization events play essential roles in the expansion of PP2 genes. The promoter regions of GhPP2 genes contain many cis-acting elements related to abiotic stress and the weighted gene co-expression network analysis (WGCNA) analysis displayed that GhPP2s could be related to salt stress. The qRT-PCR assays further confirmed that GhPP2-33 could be dramatically upregulated during the salt treatment. And the virus-induced gene silencing (VIGS) experiment proved that the silencing of GhPP2-33 could decrease salt tolerance. CONCLUSIONS: The results in this study not only offer new perspectives for understanding the evolution of PP2 genes in cotton but also further explore their function under salt stress.


Assuntos
Gossypium , Proteínas de Plantas , Tolerância ao Sal , Gossypium/genética , Lectinas de Plantas , Estresse Salino , Tolerância ao Sal/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362330

RESUMO

Soil salinization conditions seriously restrict cotton yield and quality. Related studies have shown that the DUF4228 proteins are pivotal in plant resistance to abiotic stress. However, there has been no systematic identification and analysis of the DUF4228 gene family in cotton and their role in abiotic stress. In this study, a total of 308 DUF4228 genes were identified in four Gossypium species, which were divided into five subfamilies. Gene structure and protein motifs analysis showed that the GhDUF4228 proteins were conserved in each subfamily. In addition, whole genome duplication (WGD) events and allopolyploidization might play an essential role in the expansion of the DUF4228 genes. Besides, many stress-responsive (MYB, MYC) and hormone-responsive (ABA, MeJA) related cis-elements were detected in the promoters of the DUF4228 genes. The qRT-PCR results showed that GhDUF4228 genes might be involved in the response to abiotic stress. VIGS assays and the measurement of relative water content (RWC), Proline content, POD activity, and malondialdehyde (MDA) content indicated that GhDUF4228-67 might be a positive regulator of cotton response to salt stress. The results in this study systematically characterized the DUF4228s in Gossypium species and will provide helpful information to further research the role of DUF4228s in salt tolerance.


Assuntos
Gossypium , Tolerância ao Sal , Gossypium/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica
4.
J Sci Food Agric ; 102(1): 268-279, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34109642

RESUMO

BACKGROUND: Foxtail millet grain has higher folate content than other cereal crops. However, the folate metabolite content and the expression patterns of folate metabolite-related genes are unknown. RESULTS: Liquid chromatography-mass spectrometry was used to investigate 12 folate metabolites in a foxtail millet panicle. The content of total folate and derivatives gradually decreased during panicle development. Polyglutamate 5-formyl-tetrahydrofolate was the major form. Twenty-eight genes involved in the folate metabolic pathway were identified through bioinformatic analysis. These genes in Setaria italica, S. viridis and Zea mays showed genomic collinearity. Phylogenetic analysis revealed that the folate-related genes were closely related among the C4 plants compared to C3 plants. The gene expressions were then studied at three panicle development stages. The gene expression patterns were classified into two groups, namely SiADCL1 and SiGGH as two key enzymes, which are responsible for folate synthesis and degradation; their expression levels were highest at the early panicle development stage, up to 179.11- and 163.88-fold, respectively. Their expression levels had a similar downward trend during panicle development and were significantly positively correlated with the concentration of total folate and folate derivatives. However, SiSHMT3 expression levels were significantly negatively correlated with total folate concentration. CONCLUSION: Besides being the major determinants of folate and folate derivatives accumulation, SiADCL1 and SiGGH expression levels are key limiting factors in the foxtail millet panicle. Therefore, SiADCL1 and SiGGH expression levels can be targeted in genetic modification studies to improve folate content in foxtail millet seeds in the future. © 2021 Society of Chemical Industry.


Assuntos
Ácido Fólico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Metabolômica , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/crescimento & desenvolvimento
5.
Int J Biol Macromol ; 258(Pt 2): 129116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171192

RESUMO

Vascular Plant One­zinc Finger (VOZ) transcription factor can respond to a variety of abiotic stresses, however its function in cotton and the molecular mechanisms of response to salt tolerance remained unclear. In this study, we found that GhVOZ1 is highly expressed in stamen and stem of cotton under normal conditions. The expression of GhVOZ1 increased significantly after 3 h of salt treatment in three-leaf staged upland cotton. Overexpressed transgenic lines of GhVOZ1 in Arabidopsis and upland cotton were treated with salt stress and we found that GhVOZ1 could respond positively to salt stress. GhVOZ1 can regulate Arabidopsis Vacuolar Proton Pump Pyrophosphatase (H+-PPase) gene (AVP1) expression through specific binding to GCGTCTAAAGTACGC site on GhAVP1 promoter, which was examined through Dual-luciferase assay and Electrophoretic mobility shift assay (EMSA). AVP1 expression was significantly increased in Arabidopsis with GhVOZ1 overexpression, while GhAVP1 expression was decreased in virus induced gene silenced (VIGS) cotton plants of GhVOZ1. Knockdown of GhAVP1 expression in cotton plants by VIGS showed decreased superoxide dismutase (SOD) and peroxidase (POD) activities, whereas an increased malondialdehyde (MDA) content and ultimately decreased salt tolerance. The GhVOZ1-AVP1 module could maintain sodium ion homeostasis through cell ion transport and positively regulate the salt tolerance in cotton, providing new ideas and insights for the study of salt tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Gossypium/genética , Tolerância ao Sal/genética , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Proteínas de Arabidopsis/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo
6.
Front Plant Sci ; 12: 801239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111180

RESUMO

The caleosin (CLO) protein family displays calcium-binding properties and plays an important role in the abiotic stress response. Here, a total of 107 CLO genes were identified in 15 plant species, while no CLO genes were detected in two green algal species. Evolutionary analysis revealed that the CLO gene family may have evolved mainly in terrestrial plants and that biological functional differentiation between species and functional expansion within species have occurred. Of these, 56 CLO genes were identified in four cotton species. Collinearity analysis showed that CLO gene family expansion mainly occurred through segmental duplication and whole-genome duplication in cotton. Sequence alignment and phylogenetic analysis showed that the CLO proteins of the four cotton species were mainly divided into two types: H-caleosins (class I) and L-caleosins (class II). Cis-acting element analysis and quantitative RT-PCR (qRT-PCR) suggested that GhCLOs might be regulated by abscisic acid (ABA) and methyl jasmonate (MeJA). Moreover, transcriptome data and qRT-PCR results revealed that GhCLO genes responded to salt and drought stresses. Under salt stress, gene-silenced plants (TRV: GhCLO06) showed obvious yellowing and wilting, higher malondialdehyde (MDA) content accumulation, and significantly lower activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that GhCLO06 plays a positive regulatory role in cotton salt tolerance. In gene-silenced plants (TRV: GhCLO06), ABA-related genes (GhABF2, GhABI5, and GhNAC4) were significantly upregulated after salt stress, suggesting that the regulation of salt tolerance may be related to the ABA signaling pathway. This research provides an important reference for further understanding and analyzing the molecular regulatory mechanism of CLOs for salt tolerance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa