RESUMO
Drug-resistant efflux pumps play a crucial role in bacterial antibiotic resistance. In this study, potential efflux pump inhibitors (EPIs) with a diphenylmethane scaffold were screened and evaluated against drug-resistant Escherichia coli. Twenty-four compounds were docked against the drug-binding site of E. coli multidrug transporter AcrB, and 2,2-diphenylethanol (DPE), di-p-tolyl-methanol (DPT), and 4-(benzylphenyl) acetonitrile (BPA) were screened for their highest binding free energy. The modulation assay was further used for EPI evaluation, revealing that DPE, DPT, and BPA could reduce the drug IC50 value in E. coli strains overexpressing AcrB, indicating their modulation activity. Only DPE and BPA enhanced intracellular dye accumulation and inhibited the efflux of ethidium bromide and erythromycin. In addition, DPE and BPA showed an elevated post-antibiotic effect on drug-resistant E. coli, and they did not damage the permeability of the bacterial outer membrane. The cell toxicity test showed that DPE and BPA had limited human-cell toxicity. Therefore, DPE and BPA demonstrate efflux pump inhibitory activity, and they should be further explored as potential enhancers to improve the effectiveness of existing antibiotics against drug-resistant E. coli.
RESUMO
ß-lactam-resistant Vibrio strains are a significant clinical problem, and ß-lactamase inhibitors are generally coadministered with ß-lactam drugs to control drug-resistant bacteria. Seaweed is a rich source of natural bioactive compounds; however, their potential as ß-lactamase inhibitors against bacterial pathogens remains unknown. Herein, we evaluated the potential ß-lactamase inhibitory effect of the ethanolic extracts of the red seaweed Gracilaria sp. (GE) against four Vibrio strains. The minimum inhibitory concentration, half-maximal inhibitory concentration, checkerboard assay results, and time-kill study results indicate that GE has limited antibacterial activity but can potentiate the activity of the ß-lactam antibiotic carbenicillin against Vibrio parahemolyticus and V. cholerae. We overexpressed and purified recombinant metallo-ß-lactamase, VarG, from V. cholerae for in vitro studies and observed that adding GE reduced the carbenicillin and nitrocefin degradation by VarG by 20% and 60%, respectively. Angiotensin I-converting enzyme inhibition studies demonstrated that GE did not inhibit VarG via metal chelation. Toxicity assays indicated that GE exhibited mild toxicity against human cells. Through gas chromatography and mass spectrometry, we showed that GE comprises alkaloids, phenolic compounds, terpenoids, terpenes, and halogenated aromatic compounds. This study revealed that extracts of the red seaweed Gracillaria sp. can potentially inhibit ß-lactamase activity.
RESUMO
Osseous hemangiopericytoma is rare. We present a case of a 30-year-old woman with low-back pain with radiation to the left buttock for 1 month. Magnetic resonance imaging (MRI) showed a tumor mass with areas of serpentine signal void pattern in the sacrum suggestive of a vascular tumor. Neither calcifications nor layered blood serum were noted. Histological diagnosis was compatible with osseous hemangiopericytoma.