Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010930

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major health problem. However, no effective treatments are currently available. Thus, there is a critical need to develop novel drugs that can prevent and treat NAFLD with few side effects. In this study, Tussilagone (TUS), a natural sesquiterpene isolated from Tussilago farfara L, was explored in vitro and in vivo for its potential to treat NAFLD. Our results showed that in vitro TUS reduced oleic acid palmitate acid-induced triglyceride and cholesterol synthesis in HepG2 cells, reduced intracellular lipid droplet accumulation, improved glucose metabolism disorders and increased energy metabolism and reduced oxidative stress levels. In vivo, TUS significantly reduced fat accumulation and improved liver injury in high-fat diet (HFD)-induced mice. TUS treatment significantly increased liver mitochondrial counts and antioxidant levels compared to the HFD group of mice. In addition, TUS was found to reduce the expression of genes involved in lipid synthesis sterol regulatory element binding protein-1 (SREBP1), fatty acid synthase (FASN), and stearoy-CoA desaturase 1 (SCD1) in vitro and in vivo. Our results suggest that TUS may be helpful in the treatment of NAFLD, suggesting that TUS is a promising compound for the treatment of NAFLD. Our findings provided novel insights into the application of TUS in regulating lipid metabolism.

2.
Reprod Domest Anim ; 54(6): 882-891, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30974481

RESUMO

Dairy cow mastitis is a detrimental factor in milk quality and food safety. Mastitis generally refers to inflammation caused by infection by pathogenic microorganisms. Our studies in recent years have revealed the role of miRNA regulation in Staphylococcus aureus-induced mastitis. In the present study, we overexpressed and suppressed miR-145 to investigate the function of miR-145 in Mac-T cells. Flow cytometry, ELISA and EdU staining were used to detect changes in the secretion of several Mac-T cytokines and in cell proliferation. We found that overexpression of miR-145 in Mac-T cells significantly reduced the secretion of IL-12 and TNF-α, but increased the secretion of IFN-γ; the proliferation of bovine mammary epithelial cells was also inhibited. Using quantitative real-time PCR (qRT-PCR), Western blotting and luciferase multiplex verification techniques, we found that miR-145 targeted and regulated FSCN1. Knock-down of FSCN1 significantly increased the secretion of IL-12, while the secretion of TNF-α was significantly downregulated in Mac-T cells. Upon S. aureus infection of mammary gland tissue, the body initiated inflammatory responses; Bta-miR-145 expression was downregulated, which reduced the inhibitory effect on the FSCN1 gene; and upregulation of FSCN1 expression promoted mammary epithelial cell proliferation to allow the recovery of damaged tissue. The results of the present study will aid in understanding the immune mechanism opposing S. aureus infection in dairy cows and will provide a laboratory research basis for the prevention and treatment of mastitis.


Assuntos
Proteínas de Transporte/metabolismo , Mastite Bovina/imunologia , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Infecções Estafilocócicas/veterinária , Animais , Proteínas de Transporte/genética , Bovinos , Linhagem Celular , Proliferação de Células , Citocinas/metabolismo , Células Epiteliais/fisiologia , Feminino , Proteínas dos Microfilamentos/genética , Infecções Estafilocócicas/imunologia , Staphylococcus aureus
3.
Phytomedicine ; 130: 155748, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788398

RESUMO

BACKGROUND: Nardosinone, a major extract of Rhizoma nardostachyos, plays a vital role in sedation, neural stem cell proliferation, and protection of the heart muscle. However, the huge potential of nardosinone in regulating lipid metabolism and gut microbiota has not been reported, and its potential mechanism has not been studied. PURPOSE: To explore the regulation of nardosinone on liver lipid metabolism and gut microbiota. METHODS: In this study, the role of nardosinone in lipid metabolism was investigated in vitro and in vivo by adding it to mouse feed and HepG2 cell culture medium. And 16S rRNA gene sequencing was used to explore its regulatory effect on gut microbiota. RESULTS: Results showed that nardosinone could improve HFD-induced liver injury and abnormal lipid metabolism by promoting mitochondrial energy metabolism in hepatocytes, alleviating oxidative stress damage, and regulating the composition of the gut microbiota. Mechanistically, combined with network pharmacology and reverse docking analysis, it was predicted that CYP2D6 was the target of nardosinone, and the binding was verified by cellular thermal shift assay (CETSA). CONCLUSIONS: This study highlights a novel mechanism function of nardosinone in regulating lipid metabolism and gut microbiota. It also predicts and validates CYP2D6 as a previously unknown regulatory target, which provides new possibilities for the application of nardosinone and the treatment of metabolic-associated fatty liver disease.


Assuntos
Citocromo P-450 CYP2D6 , Metabolismo Energético , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Humanos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Células Hep G2 , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Metabolismo Energético/efeitos dos fármacos , Citocromo P-450 CYP2D6/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Simulação de Acoplamento Molecular , Fígado Gorduroso/tratamento farmacológico
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166620, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494040

RESUMO

Obesity has become an increasingly serious health issue with the continuous improvement in living standards. Its prevalence has become an economic burden on health care systems worldwide. Flavonoids have been shown to be beneficial in the prevention and treatment of obesity. Here, we evaluated the therapeutic potential of the flavonoid hesperidin methyl chalcone (HMC) on mice with high-fat diet (HFD)-induced hepatic steatosis in vivo and in vitro. Treatment with HMC reduced oleic and palmitic acid-induced increases in intracellular triglyceride accumulation in HepG2, AML12 and LMH cells. HMC also enhanced energy metabolism and lowered oxidative stress. We used Discovery studio to dock key proteins associated with lipid metabolism disorders to HMC, and found that HMC interacted with lipase. Furthermore, we demonstrated that HMC improved lipase activity and lipolysis. In addition, we found that HMC promoted glucose absorption, alleviated lipid metabolic disorders, improved HFD-induced liver injury, and regulated HFD-induced changes in energy metabolism. In conclusion, our study demonstrated that HMC ameliorated HFD-induced obesity and its complications by promoting lipase activity, and provides a novel approach for the prevention and treatment of obesity and related diseases.


Assuntos
Chalconas , Hesperidina , Transtornos do Metabolismo dos Lipídeos , Camundongos , Animais , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Chalconas/farmacologia , Obesidade/metabolismo , Flavonoides/uso terapêutico , Metabolismo Energético , Lipase/metabolismo , Lipídeos
5.
Curr Med Chem ; 30(32): 3649-3667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36345246

RESUMO

The prevalence of obesity and its associated diseases has increased dramatically, and they are major threats to human health worldwide. A variety of approaches, such as physical training and drug therapy, can be used to reduce weight and reverse associated diseases; however, the efficacy and the prognosis are often unsatisfactory. It has been reported that natural food-based small molecules can prevent obesity and its associated diseases. Among them, alkaloids and polyphenols have been demonstrated to regulate lipid metabolism by enhancing energy metabolism, promoting lipid phagocytosis, inhibiting adipocyte proliferation and differentiation, and enhancing the intestinal microbial community to alleviate obesity. This review summarizes the regulatory mechanisms and metabolic pathways of these natural small molecules and reveals that the binding targets of most of these molecules are still undefined, which limits the study of their regulatory mechanisms and prevents their further application. In this review, we describe the use of Discovery Studio for the reverse docking of related small molecules and provide new insights for target protein prediction, scaffold hopping, and mechanistic studies in the future. These studies will provide a theoretical basis for the modernization of anti-obesity drugs and promote the discovery of novel drugs.


Assuntos
Alcaloides , Doenças Metabólicas , Humanos , Metabolismo dos Lipídeos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/química , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Obesidade/complicações , Doenças Metabólicas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa