Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(12): 126601, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39373447

RESUMO

As a distinctive feature unique to non-Hermitian systems, non-Hermitian skin effect displays fruitful exotic phenomena in one or higher dimensions, especially when conventional topological phases are involved. Among them, hybrid skin-topological effect is theoretically proposed recently, which exhibits anomalous localization of topological boundary states at lower-dimensional boundaries accompanied by extended bulk states. Here, we experimentally realize the hybrid skin-topological effect in a non-Hermitian phononic crystal. The phononic crystal, before tuning to be non-Hermitian, is an ideal acoustic realization of the Kane-Mele model, which hosts gapless helical edge states at the boundaries. By introducing a staggered distribution of loss, the spin-dependent edge modes pile up to opposite corners, leading to a direct observation of the spin-dependent hybrid skin-topological effect. Our Letter highlights the interplay between topology and non-Hermiticity and opens new routes to non-Hermitian wave manipulations.

2.
Front Bioeng Biotechnol ; 10: 1025155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440435

RESUMO

Orally administered colon-targeted delivery vehicles are of major importance in the treatment of inflammatory bowel disease (IBD). However, it remains a challenge to maintain the integrity of such delivery vehicles during treatment, particularly in the gastric environment, which may cause untimely drug release before reaching the targeted colon. Herein, an oral colon-targeted drug delivery system (OCDDS) based on acetylated konjac glucomannan (AceKGM) has been developed in this work, which accomplishes colonic localization release and targets local inflammatory macrophages. The AceKGM nanoparticle-loading curcumin (Cur) was successfully fabricated by emulsion solvent evaporation techniques. DLS, AFM, and SEM were used in order to evaluate the nanoparticles' diameter as well as their in vitro drug release profile, and reactive oxygen species (ROS) scavenging results showed that the OCDDS considerably retained the activity of Cur treated with simulated gastric fluid (SGF) and controllably released in simulated intestinal fluid (SIF). In addition, the adhesion experiment results indicated that the nanoparticle could accumulate on the colonic macrophages. Evaluations in colitis mice showed that the treatment significantly alleviated the symptoms of colitis by decreasing the local level of myeloperoxidase (MPO) and the disease activity index (DAI) score in mice. In summary, the results of our research demonstrate that Cur-AceKGM nanoparticles exhibit significantly improved therapeutic efficacy compared to orally administered free Cur and can be developed as an effective drug delivery vehicle for IBD treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa