Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7688-7697, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869197

RESUMO

Radiation-tolerance and repairable flexible transistors and integrated circuits (ICs) with low power consumption have become hot topics due to their wide applications in outer space, nuclear power plants, and X-ray imaging. Here, we designed and developed novel flexible semiconducting single-walled carbon nanotube (sc-SWCNT) thin-film transistors (TFTs) and ICs. Sc-SWCNT solid-electrolyte-gate dielectric (SEGD) TFTs showcase symmetric ambipolar characteristics with flat-band voltages (VFB) of ∼0 V, high ION/IOFF ratios (>105), and the recorded irradiation resistance (up to 22 Mrad). Moreover, flexible sc-SWCNT ICs, including CMOS-like inverters and NAND and NOR logic gates, have excellent operating characteristics with low power consumption (≤8.4 pW) and excellent irradiation resistance. Significantly, sc-SWCNT SEGD TFTs and ICs after radiation with a total irradiation dose (TID) ≥ 11 Mrad can be repaired after thermal heating at 100 °C. These outstanding characteristics are attributed to the designed device structures and key core materials including SEGD and sc-SWCNT.

2.
Micromachines (Basel) ; 15(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38930759

RESUMO

In recent years, with the outbreak of the global energy crisis, renewable solar energy has become a focal point of research. However, the utilization efficiency of natural photosynthesis (NPS) is only about 1%. Inspired by NPS, artificial photosynthesis (APS) was developed and utilized in applications such as the regeneration of coenzymes. APS for coenzyme regeneration can overcome the problem of high energy consumption in comparison to electrocatalytic methods. Microreactors represent a promising technology. Compared with the conventional system, it has the advantages of a large specific surface area, the fast diffusion of small molecules, and high efficiency. Introducing microreactors can lead to more efficient, economical, and environmentally friendly coenzyme regeneration in artificial photosynthesis. This review begins with a brief introduction of APS and microreactors, and then summarizes research on traditional electrocatalytic coenzyme regeneration, as well as photocatalytic and photo-electrocatalysis coenzyme regeneration by APS, all based on microreactors, and compares them with the corresponding conventional system. Finally, it looks forward to the promising prospects of this technology.

3.
J Drug Target ; 32(6): 606-623, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38656224

RESUMO

Atherosclerosis (AS) is considered to be one of the major causes of cardiovascular disease. Its pathological microenvironment is characterised by increased production of reactive oxygen species, lipid oxides, and excessive inflammatory factors, which accumulate at the monolayer endothelial cells in the vascular wall to form AS plaques. Therefore, intervention in the pathological microenvironment would be beneficial in delaying AS. Researchers have designed biomimetic nanomedicines with excellent biocompatibility and the ability to avoid being cleared by the immune system through different therapeutic strategies to achieve better therapeutic effects for the characteristics of AS. Biomimetic nanomedicines can further enhance delivery efficiency and improve treatment efficacy due to their good biocompatibility and ability to evade clearance by the immune system. Biomimetic nanomedicines based on therapeutic strategies such as neutralising inflammatory factors, ROS scavengers, lipid clearance and integration of diagnosis and treatment are versatile approaches for effective treatment of AS. The review firstly summarises the targeting therapeutic strategy of biomimetic nanomedicine for AS in recent 5 years. Biomimetic nanomedicines using cell membranes, proteins, and extracellular vesicles as carriers have been developed for AS.


Assuntos
Aterosclerose , Biomimética , Sistemas de Liberação de Medicamentos , Nanomedicina , Humanos , Aterosclerose/tratamento farmacológico , Nanomedicina/métodos , Biomimética/métodos , Sistemas de Liberação de Medicamentos/métodos , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
4.
Front Psychiatry ; 15: 1280935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374979

RESUMO

Introduction: Depression is a prevalent mental illness that is primarily diagnosed using psychological and behavioral assessments. However, these assessments lack objective and quantitative indices, making rapid and objective detection challenging. In this study, we propose a novel method for depression detection based on eye movement data captured in response to virtual reality (VR). Methods: Eye movement data was collected and used to establish high-performance classification and prediction models. Four machine learning algorithms, namely eXtreme Gradient Boosting (XGBoost), multilayer perceptron (MLP), Support Vector Machine (SVM), and Random Forest, were employed. The models were evaluated using five-fold cross-validation, and performance metrics including accuracy, precision, recall, area under the curve (AUC), and F1-score were assessed. The predicted error for the Patient Health Questionnaire-9 (PHQ-9) score was also determined. Results: The XGBoost model achieved a mean accuracy of 76%, precision of 94%, recall of 73%, and AUC of 82%, with an F1-score of 78%. The MLP model achieved a classification accuracy of 86%, precision of 96%, recall of 91%, and AUC of 86%, with an F1-score of 92%. The predicted error for the PHQ-9 score ranged from -0.6 to 0.6.To investigate the role of computerized cognitive behavioral therapy (CCBT) in treating depression, participants were divided into intervention and control groups. The intervention group received CCBT, while the control group received no treatment. After five CCBT sessions, significant changes were observed in the eye movement indices of fixation and saccade, as well as in the PHQ-9 scores. These two indices played significant roles in the predictive model, indicating their potential as biomarkers for detecting depression symptoms. Discussion: The results suggest that eye movement indices obtained using a VR eye tracker can serve as useful biomarkers for detecting depression symptoms. Specifically, the fixation and saccade indices showed promise in predicting depression. Furthermore, CCBT demonstrated effectiveness in treating depression, as evidenced by the observed changes in eye movement indices and PHQ-9 scores. In conclusion, this study presents a novel approach for depression detection using eye movement data captured in VR. The findings highlight the potential of eye movement indices as biomarkers and underscore the effectiveness of CCBT in treating depression.

5.
Eur J Med Chem ; 265: 116078, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141286

RESUMO

In this study, ligands 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (PIP), 2-(2-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (NPIP), 2-(2-nitronaphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NNIP) and their iridium(III) metal compounds [Ir(ppy)2(PIP)](PF6) (ppy = 2-phenylpyridine, 1a), [Ir(ppy)2(NPIP)](PF6) (1b), [Ir(ppy)2(NNIP)](PF6) (1c) were designed and synthesized. The anti-cancer activities of 1a, 1b and 1c on BEL-7402, HepG2, SK-Hep1 and non-cancer LO2 were detected using MTT method. 1a shows moderate, 1b and 1c display low or no anti-cancer activities. To elevate the anti-cancer effectiveness, encapsulating the compounds 1a, 1b and 1c into the ordinary or targeted liposomes to produce 1alip, 1blip, 1clip, or targeted 1aTlip, 1bTlip and 1cTlip. The IC50 values of 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip against HepG2 cells are 7.9 ± 0.1, 8.6 ± 0.2, 16.9 ± 0.5, 5.9 ± 0.2, 7.3 ± 0.1 and 9.7 ± 0.7 µM, respectively. Specifically, the anti-tumor activity assays in vivo found that the inhibitory rates are 23.24 % for 1a, 61.27 % for 1alip, 76.06 % for 1aTlip. It is obvious that the targeted liposomes entrapped iridium(III) compound greatly enhance anti-cancer efficacy. Additionally, 1alip, 1blip and 1clip or targeted 1aTlip, 1bTlip and 1cTlip can effectively restrain the cell colony and proliferation in the G0/G1 period. 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip can increase reactive oxygen species (ROS) concentration, arouse a decline in the mitochondrial membrane potential and promote Ca2+ release. RNA-sequence was applied to examine the signaling pathways. Taken together, the liposomes or targeted liposomes encapsulated compounds trigger cell death by way of apoptosis, autophagy, ferroptosis, disruption of mitochondrial function and PI3K/AKT/mTOR signaling pathways.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ferroptose , Fosfatos de Inositol , Humanos , Células Hep G2 , Lipossomos , Linhagem Celular Tumoral , Irídio/farmacologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Fenantrolinas/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Complexos de Coordenação/farmacologia , Antineoplásicos/farmacologia , Apoptose , Espécies Reativas de Oxigênio/metabolismo
6.
J Inorg Biochem ; 256: 112549, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579631

RESUMO

Herein, we synthesized and characterized two novel iridium (III) complexes: [Ir(bzq)2(PPD)](PF6) (4a, with bzq = deprotonated benzo[h]quinoline and PPD = pteridino[6,7-f][1,10]phenanthroline-11,13-diamine) and [Ir(piq)2(PPD)](PF6) (4b, with piq = deprotonated 1-phenylisoquinoline). The anticancer efficacy of these complexes, 4a and 4b, was investigated using 3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide (MTT). Complex 4a exhibited no cytotoxic activity, while 4b demonstrated moderate efficacy against SGC-7901, A549, and HepG2 cancer cells. To enhance their anticancer potential, we explored two strategies: (I) light irradiation and (II) encapsulation of the complexes in liposomes, resulting in the formation of 4alip and 4blip. Both strategies significantly increased the ability of 4a, 4b to kill cancer cells. The cellular studies indicated that both the free complexes 4a, 4b and their liposomal forms 4alip and 4blip effectively inhibited cell proliferation. The cell cycle arrest analysis uncovered 4alip and 4blip arresting cell growth in the S period. Additionally, we investigated apoptosis and ferroptosis pathways, observing an increase in malondialdehyde (MDA) levels, a reduction of glutathione (GSH), a down-regulation of GPX4 (glutathione peroxidase) expression, and lipid peroxidation. The effects on mitochondrial membrane potential and intracellular Ca2+ concentrations were also examined, revealing that both light-activated and liposomal forms of 4alip and 4blip caused a decline in mitochondrial membrane potential and an enhancement in intracellular Ca2+ levels. In conclusion, these complexes and them encapsulated liposomes induce cell death through apoptosis and ferroptosis.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Irídio , Lipossomos , Humanos , Irídio/química , Irídio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial/efeitos dos fármacos
7.
Eur J Med Chem ; 265: 116112, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183779

RESUMO

This paper unveils a novel perspective on synthesis and characterization of the ligand 5-bromo-2-amino-2'-(phenyl-1H-imidazo[4,5-f][1,10]phenanthroline) (BAPIP), and its iridium(III) complexes [Ir(PPY-)2(BAPIP)](PF6) (1a, with PPY- as deprotonated 2-phenylpyridine), [Ir(PIQ-)2(BAPIP)](PF6) (1b, piq- denoting deprotonated 1-phenylisoquinoline), and [Ir(BZQ-)2(BAPIP)](PF6) (1c, bzq- signifying deprotonated benzo[h]quinoline). Systematic evaluation of the cytotoxicity of 1a, 1b, and 1c across diverse cell lines encompassing B16, HCT116, HepG2, A549, HeLa, and LO2 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Unexpectedly, compounds 1b and 1c demonstrated no cytotoxicity against the above cell lines. Motivated by the pursuit of heightened anti-proliferative potential, a strategic encapsulation approach yielded liposomes 1alip, 1blip, and 1clip. As expectation, 1alip, 1blip, and 1clip displayed remarkable anti-proliferative efficacy, particularly noteworthy in A549 cells, exhibiting IC50 values of 4.9 ± 1.0, 5.9 ± 0.1, and 7.6 ± 0.2 µM, respectively. Moreover, our investigation illuminated the mitochondrial accumulation of these liposomal entities, 1alip, 1blip, and 1clip, evoking apoptosis through the mitochondrial dysfunction mediated by reactive oxygen species (ROS). The ferroptosis was confirmed by decrease in glutathione (GSH) concentrations, the downregulation of glutathione peroxidase 4 (GPX4), increase of high mobility group protein 1 (HMGB1), and lipid peroxidation. Simultaneously, pyroptosis as another mode of cell death was undertaken. RNA-sequencing was employed to investigate intricate signalling pathways. In vivo examination provided tangible evidence of 1alip in effectively curbing tumor growth. Collectively, this study provides a multifaceted mode of cellular demise orchestrated by 1a, 1alip, 1blip, and 1clip, involving pathways encompassing apoptosis, ferroptosis, and pyroptosis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ferroptose , Humanos , Lipossomos , Linhagem Celular Tumoral , Irídio/farmacologia , Gasderminas , Piroptose , Proliferação de Células , Apoptose , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa