Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31208008

RESUMO

Excessive abdominal fat deposition is an issue with general concern in broiler production, especially for Chinese native chicken breeds. A high-fat diet (HFD) can induce body weight gained and excessive fat deposition, and genes and pathways participate in fat metabolism and adipogenesis would be influenced by HFD. In order to reveal the main genes and pathways involved in chicken abdominal fat deposition, we used HFD and normal diet (ND) to feed a Chinese native chicken breed, respectively. Results showed that HFD can increase abdominal fat deposition and induce adipocyte hypertrophy. Additionally, we used RNA-sequencing to identify the differentially expressed genes (DEGs) between HFD and ND chickens in liver and abdominal fat. By analyzed these DEGs, we found that the many DEGs were enriched in fat metabolism related pathways, such as peroxisome proliferator-activated receptor (PPAR) signaling, fat digestion and absorption, extracellular matrix (ECM)-receptor interaction, and steroid hormone biosynthesis. Notably, the expression of insulin-like growth factor II mRNA binding protein 1 (IGF2BP1), which is a binding protein of IGF2 mRNA, was found to be induced in liver and abdominal fat by HFD. Ectopic expression of IGF2BP1 in chicken liver-related cell line Leghorn strain M chicken hepatoma (LMH) cell revealed that IGF2BP1 can regulate the expression of genes associated with fatty acid metabolism. In chicken preadipocytes (ICP cell line), we found that IGF2BP1 can promote adipocyte proliferation and differentiation, and the lipid droplet content would be increased by overexpression of IGF2BP1. Taken together, this study provides new insights into understanding the genes and pathways involved in abdominal fat deposition of Chinese native broiler, and IGF2BP1 is an important candidate gene for the study of fat metabolism and adipogenesis in chicken.


Assuntos
Adipogenia/genética , Galinhas/genética , Transcriptoma , Gordura Abdominal/metabolismo , Adipócitos/metabolismo , Adipócitos/fisiologia , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Linhagem Celular , Proliferação de Células , Ácidos Graxos/metabolismo , Feminino , Gotículas Lipídicas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Yi Chuan ; 41(10): 962-973, 2019 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-31624058

RESUMO

With the improvement of growth traits and feed conversion rate, the abdominal fat rate of Chinese local breeds of broilers has been increasing. Excessive abdominal fat deposition not only reduces the slaughter rate and disease resistance of broiler chickens, but also produces waste due to the difficulty of fat treatment. In order to study the regulatory genes and pathways involved in abdominal fat deposition of broilers, we used high-fat diets to feed the Xinghua Chicken, which is a Chinese local breed. Two weeks after feeding, we found that the abdominal fat weight and rate of broilers in the high-fat diet group increased significantly, and the diameter and area of abdominal fat cells also increased significantly. Transcriptome sequencing of abdominal fat and livers showed that the differentially expressed genes in the abdominal fat were mainly enriched in the cell cycle, peroxisome proliferator- activated receptor (PPAR) and extracellular matrix (ECM) receptor signaling pathways. The differentially expressed genes in livers were also significantly enriched in the cell cycle pathway, as well as in the steroid biosynthesis and PPAR signaling pathway. By analyzing the common differentially expressed genes in abdominal fat and liver tissues, we found that these genes were also enriched in cell cycle. Finally, we used the chicken LMH (chicken hepatoma cell) cell line and chicken ICP (immortalized chicken preadipocytes) cell line to do the in vitro validation assays. We used high-fat and common medium to culture the cells. The results showed that after 48 hours, the high-fat medium could significantly promote cell cycle and increase the number of cells in S phase. Additionally, qRT-PCR results showed that the high-fat medium could significantly promote the expression of genes related to cell cycle. In conclusion, we found that high-fat diets activate the cell cycle progression of chicken hepatocytes and preadipocytes, promote cell proliferation, and then increase abdominal fat deposition.


Assuntos
Gordura Abdominal/fisiologia , Ciclo Celular , Galinhas , Transcriptoma , Animais , Linhagem Celular , Proliferação de Células , Perfilação da Expressão Gênica , Receptores Ativados por Proliferador de Peroxissomo , Receptores de Superfície Celular , Transdução de Sinais
3.
Poult Sci ; 95(1): 99-107, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26574024

RESUMO

Abhydrolase domain containing 5 gene (ABHD5), also known as comparative gene identification 58 (CGI-58), is a member of the α/ß-hydrolase family as a protein cofactor of ATGL stimulating its triacylglycerol hydrolase activity. In this study, we aim to characterize the expression and variations of ABHD5 and to study their functions in chicken fat metabolism. We compared the ABHD5 expression level in various tissues and under different nutrition conditions, identified the variations of ABHD5, and associated them with production traits in an F2 resource population of chickens. Overexpression analysis with two different genotypes and siRNA interfering analysis of ABHD5 were performed in chicken preadipocytes. Chicken ABDH5 was expressed widely and most predominantly in adipose tissue. Five SNPs of the ABHD5 gene were identified and genotyped in the F2 resource population. The c.490C > T SNP was associated with subcutaneous fat thickness (P < 0.01), carcass weight (P < 0.05), body weight (P < 0.05), shank diameter (P < 0.05), and shank length (P < 0.05). The c.423T > C SNP was also associated with chicken body weight (P < 0.05) and shank diameter (P < 0.05). In chicken preadipocytes, overexpression of wild type ABDH5 did not affect the mRNA level of ATGL (adipose triglyceride lipase) but markedly decreased (P < 0.05) the TG (triglyceride) content of the cell, whereas overexpression of mutation type ABHD5 did not affect either ATGL expression or TG content of the cell. The expression of ATGL and TG content of the cell were decreased (P < 0.05) after ABHD5 knockdown in preadipocytes. The mRNA level of ABHD5 was regulated by both feeding and fasting, and by consumption of a high fat diet. It was increased greatly by fasting (P < 0.05) and was returned to control levels after re-feeding in the adipose tissues, and down-regulated in abdominal fat (P < 0.05) and the liver (P < 0.01) of chickens with a high fat diet. These results suggest that expression and variations of ABHD5 may affect fat metabolism through regulating the activity of ATGL in chickens.


Assuntos
Galinhas/fisiologia , Gorduras/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidrolases/genética , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Galinhas/genética , Feminino , Hidrolases/metabolismo , Masculino , Mutação , Reação em Cadeia da Polimerase em Tempo Real/veterinária
4.
Front Genet ; 13: 1035368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568393

RESUMO

Enzymes of the silent information regulator (SIRT) family exert crucial roles in basic cellular physiological processes including apoptosis, metabolism, ageing, and cell cycle progression. They critically contribute to promoting or inhibiting cancers such as glioma. In the present study, a new gene signature of this family was identified for use in risk assessment and stratification of glioma patients. To this end, the transcriptome and relevant clinical records of patients diagnosed with glioma were obtained from the Cancer Genomic Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). LASSO regression and multivariate Cox analyses were used to establish the signature. Using Kaplan-Meier analyses, overall survival (OS) was assessed and compared between a training and an external test datasets which showed lower OS in patients with high risk of glioma compared to those with low risk. Further, ROC curve analyses indicated that the SIRT-based signature had the desired accuracy and universality for evaluating the prognosis of glioma patients. Using univariate and multivariate Cox regression analyses, the SIRT-based signature was confirmed as an independent prognostic factor applicable to subjects in the TCGA and CGGA databases. We also developed an OS nomogram including gender, age, risk score, pathological grade, and IDH status for clinical decision-making purposes. ssGSEA analysis showed a higher score for various immune subgroups (e.g., CD8+ T cells, DC, and TIL) in samples from high-risk patients, compared to those of low-risk ones. qPCR and western blotting confirmed the dysregulated expression of SIRTs in gliomas. Taken together, we developed a new signature on the basis of five SIRT family genes, which can help accurately predict OS of glioma patients. In addition, the findings of the present study suggest that this characteristic is associated with differences in immune status and infiltration levels of various immune cells in the tumor microenvironment.

5.
Front Genet ; 12: 672888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276778

RESUMO

The Ras and Rab interactor 2 (RIN2) gene, which encodes RAS and Rab interacting protein 2, can interact with GTP-bound Rab5 and participate in early endocytosis. This study found a 61-bp insertion/deletion (indel) in the RIN2 intron region, and 3 genotypes II, ID, and DD were observed. Genotype analysis of mutation sites was performed on 665 individuals from F2 population and 8 chicken breeds. It was found that the indel existed in each breed and that yellow feathered chickens were mainly of the DD genotype. Correlation analysis of growth and carcass traits in the F2 population of Xinghua and White Recessive Rock chickens showed that the 61-bp indel was significantly correlated with abdominal fat weight, abdominal fat rate, fat width, and hatching weight (P < 0.05). RIN2 mRNA was expressed in all the tested tissues, and its expression in abdominal fat was higher than that in other tissues. In addition, the expression of the RIN2 mRNA in the abdominal fat of the DD genotype was significantly higher than that of the II genotype (P < 0.05). The transcriptional activity results showed that the luciferase activity of the pGL3-DD vector was significantly higher than that of the pGL3-II vector (P < 0.01). Moreover, the results indicate that the polymorphisms in transcription factor binding sites (TFBSs) of 61-bp indel may affect the transcriptional activity of RIN2, and thus alter fat traits in chicken. The results of this study showed that the 61-bp indel was closely related to abdominal fat-related and hatching weight traits of chickens, which may have reference value for molecular marker-assisted selection of chickens.

6.
Neurol Res ; 43(9): 701-707, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34278976

RESUMO

Effective treatment strategies for vertebrobasilar dissecting aneurysms (VBDAs) remain controversial due to their high morbidity and mortality. The aim of the present study was to evaluate the efficacy of overlapping stent-assisted coil embolization (OSCE) in VBDA patients. A total of 42 patients with VBDA were retrospectively examined by OSCE from May 2015 to August 2019. Patients' clinical and radiological parameters were assessed at discharge and during interim follow-up. Safety, technical feasibility and follow-up clinical and imaging observations for therapy were also evaluated retrospectively. The average age of the 42 patients who underwent OSCE was 54 years (range 33 to 74 years). Overlapping stents were successfully implanted in all patients after coil embolism. Overall clinical results were effective (score on a modified Rankin scale from 0 to 2) in all patients. In the meantime, all patients had favorable outcomes when evaluating telephone calls or digital subtractive angiography (DSA) imaging. Among 42 patients, one patient died due to a perioperative rupture. All the remaining 41 patients had a good prognosis during the follow-up telephone call, with a median follow-up of 28 months (range, 2 to 55 months). The total number of DSA recurrences was 20. Subsequent DSA results showed that all aneurysms were completely occluded while in only one case the parent artery of the aneurysm was completely closed. OSCE in VBDAs patients is safe and effective. This technique showed favorable results in clinical and imaging follow-ups for non-ruptured and ruptured VBDAs.


Assuntos
Dissecção Aórtica/terapia , Embolização Terapêutica/métodos , Procedimentos Endovasculares , Adulto , Idoso , Artéria Basilar/patologia , Artéria Basilar/cirurgia , Humanos , Pessoa de Meia-Idade , Stents , Resultado do Tratamento , Artéria Vertebral/patologia , Artéria Vertebral/cirurgia
7.
J Cachexia Sarcopenia Muscle ; 12(6): 1704-1723, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427057

RESUMO

BACKGROUND: Transmembrane proteins are vital for intercellular signalling and play important roles in the control of cell fate. However, their physiological functions and mechanisms of action in myogenesis and muscle disorders remain largely unexplored. It has been found that transmembrane protein 182 (TMEM182) is dramatically up-regulated during myogenesis, but its detailed functions remain unclear. This study aimed to analyse the function of TMEM182 during myogenesis and muscle regeneration. METHODS: RNA sequencing, quantitative real-time polymerase chain reaction, and immunofluorescence approaches were used to analyse TMEM182 expression during myoblast differentiation. A dual-luciferase reporter assay was used to identify the promoter region of the TMEM182 gene, and a chromatin immunoprecipitation assay was used to investigate the regulation TMEM182 transcription by MyoD. We used chickens and TMEM182-knockout mice as in vivo models to examine the function of TMEM182 in muscle growth and muscle regeneration. Chickens and mouse primary myoblasts were used to extend the findings to in vitro effects on myoblast differentiation and fusion. Co-immunoprecipitation and mass spectrometry were used to identify the interaction between TMEM182 and integrin beta 1 (ITGB1). The molecular mechanism by which TMEM182 regulates myogenesis and muscle regeneration was examined by Transwell migration, cell wound healing, adhesion, glutathione-S-transferse pull down, protein purification, and RNA immunoprecipitation assays. RESULTS: TMEM182 was specifically expressed in skeletal muscle and adipose tissue and was regulated at the transcriptional level by the myogenic regulatory factor MyoD1. Functionally, TMEM182 inhibited myoblast differentiation and fusion. The in vivo studies indicated that TMEM182 induced muscle fibre atrophy and delayed muscle regeneration. TMEM182 knockout in mice led to significant increases in body weight, muscle mass, muscle fibre number, and muscle fibre diameter. Skeletal muscle regeneration was accelerated in TMEM182-knockout mice. Furthermore, we revealed that the inhibitory roles of TMEM182 in skeletal muscle depend on ITGB1, an essential membrane receptor involved in cell adhesion and muscle formation. TMEM182 directly interacted with ITGB1, and this interaction required an extracellular hybrid domain of ITGB1 (aa 387-470) and a conserved region (aa 52-62) within the large extracellular loop of TMEM182. Mechanistically, TMEM182 modulated ITGB1 activation by coordinating the association between ITGB1 and laminin and regulating the intracellular signalling of ITGB1. Myogenic deletion of TMEM182 increased the binding activity of ITGB1 to laminin and induced the activation of the FAK-ERK and FAK-Akt signalling axes during myogenesis. CONCLUSIONS: Our data reveal that TMEM182 is a novel negative regulator of myogenic differentiation and muscle regeneration.


Assuntos
Galinhas , Regeneração , Animais , Diferenciação Celular , Integrina beta1 , Integrinas , Camundongos , Músculo Esquelético , Mioblastos
8.
Neuroreport ; 31(11): 845-850, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32604395

RESUMO

Oxidative stress and neuronal apoptosis are considered crucial therapeutic targets against early brain injury (EBI) after subarachnoid hemorrhage (SAH). Emerging evidence indicates that mitochondrial dysfunction is the main reason for oxidative stress and neuronal apoptosis. MitoNEET, an outer mitochondrial membrane protein, has been shown to regulate mitochondrial function. However, whether mitoNEET activation attenuates oxidative stress and neuronal apoptosis after SAH remains unknown. This study was therefore conducted to verify the neuroprotective role of mitoNEET in EBI after SAH in rats. A total of 93 rats were subjected to an endovascular perforation model of SAH. TT01001, a selective agonist of mitoNEET, was administered intraperitoneally 1 h after SAH induction. Neurological tests, immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) staining, dihydroergotamine (DHE) staining, and western blot experiments were performed. The results showed that MitoNEET is expressed in neurons, but significantly decreased at 24 h after SAH induction. Activating mitoNEET with TT01001 significantly improved the neurological deficits, and reduced oxidative stress and neuronal apoptosis as measured by DHE and TUNEL staining, when compared with the SAH+vehicle group. Furthermore, TT01001 treatment decreased the expression of the proapoptotic marker, Bax, while increasing the expression of the antiapoptotic marker, Bcl-2. Together, our results suggested that mitoNEET activation with TT01001 reduced oxidative stress injury and neuronal apoptosis by improving mitochondrial dysfunction in EBI after SAH.


Assuntos
Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piperidinas/farmacologia , Hemorragia Subaracnóidea/patologia , Tioureia/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Masculino , Mitocôndrias/patologia , Neurônios/patologia , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/metabolismo , Tioureia/farmacologia
9.
Animals (Basel) ; 10(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178328

RESUMO

Golgin subfamily B member 1 (GOLGB1) gene encodes the coat protein 1 vesicle inhibiting factor, giantin. Previous study showed that mutations of the GOLGB1 gene are associated with dozens of human developmental disorders and diseases. However, the biological function of GOLGB1 gene in chicken is still unclear. In this study, we detected a novel 65-bp insertion/deletion (indel) polymorphism in the chicken GOLGB1 intron 5. Association of this indel with chicken growth and carcass traits was analyzed in a yellow chicken population. Results showed that this 65-bp indel was significantly associated with chicken body weight (p < 0.05), highly significantly associated with neck weight, abdominal fat weight, abdominal fat percentage and the yellow index b of breast (p < 0.01). Analysis of genetic parameters indicated that "I" was the predominant allele. Except for the yellow index b of breast, II genotype individuals had the best growth characteristics, by comparison with the ID genotype and DD genotype individuals. Moreover, the mRNA expression of GOLGB1 was detected in the liver tissue of chicken with different GOLGB1 genotypes, where the DD genotype displayed high expression levels. These findings hinted that the 65-bp indel in GOLGB1 could be assigned to a molecular marker in chicken breeding and enhance production in the chicken industry.

10.
Front Genet ; 11: 610605, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519913

RESUMO

Sex-linked dwarf (SLD) chicken, which is caused by a recessive mutation of the growth hormone receptor (GHR), has been widely used in the Chinese broiler industry. However, it has been found that the SLD chicken has more abdominal fat deposition than normal chicken. Excessive fat deposition not only reduced the carcass quality of the broilers but also reduced the immunity of broilers to diseases. To find out the key genes and the precise regulatory pathways that were involved in the GHR mutation-induced excessive fat deposition, we used high-fat diet (HFD) and normal diet to feed the SLD chicken and normal chicken and analyzed the differentially expressed genes (DEGs) among the four groups. Results showed that the SLD chicken had more abdominal fat deposition and larger adipocytes size than normal chicken and HFD can promote abdominal fat deposition and induce adipocyte hypertrophy. RNA sequencing results of the livers and abdominal fats from the above chickens revealed that many DEGs between the SLD and normal chickens were enriched in fat metabolic pathways, such as peroxisome proliferator-activated receptor (PPAR) signaling, extracellular matrix (ECM)-receptor pathway, and fatty acid metabolism. Importantly, by constructing and analyzing the GHR-downstream regulatory network, we found that suppressor of cytokine signaling 2 (SOCS2) and cytokine-inducible SH2-containing protein (CISH) may involve in the GHR mutation-induced abdominal fat deposition in chicken. The ectopic expression of SOCS2 and CISH in liver-related cell line leghorn strain M chicken hepatoma (LMH) cell and immortalized chicken preadipocytes (ICP) revealed that these two genes can regulate fatty acid metabolism, adipocyte differentiation, and lipid droplet accumulation. Notably, overexpression of SOCS2 and CISH can rescue the hyperactive lipid metabolism and excessive lipid droplet accumulation of primary liver cell and preadipocytes that were isolated from the SLD chicken. This study found some genes and pathways involved in abdominal fat deposition of the SLD chicken and reveals that SOCS2 and CISH are two key genes involved in the GHR mutation-induced excessive fat deposition of the SLD chicken.

11.
Mol Med Rep ; 19(6): 4779-4787, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30957181

RESUMO

Bone marrow stem cells (BMSCs) are a group cells that function as an underlying cell source for bone tissue regeneration. However, the molecular mechanisms of how BMSCs are induced into apoptosis remains unclear. In the present study, it was demonstrated that the molecular mechanisms of BMSCs were exerted via microRNA­15a­5p (miR­15a­5p) in femoral head necrosis (FHN). Briefly, miRNA­15a­5p expression was elevated in a rat model of FHN. Overexpression of miR­15a­5p promoted the apoptosis of BMSCs and reduced cell growth through the Wnt/ß­catenin/peroxisome proliferator­activated receptor γ (PPARγ) signaling pathway. Downregulation of miR­15a­5p reduced the apoptosis of BMSCs and promoted cell growth through the Wnt/ß­catenin/PPARγ signaling pathway. The activation of Wnt attenuated the effects of miR­15a­5p on the apoptosis of BMSCs via the ß­catenin/PPARγ signaling pathway. In conclusion, the present results indicated that miRNA­15a­5p was involved in the regulation of the apoptosis of BMSCs through regulating the Wnt/ß­catenin/PPARγ signaling pathway, which may serve an important role in the regulation of FHN.


Assuntos
Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/farmacologia , PPAR gama/metabolismo , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Regulação para Baixo , Necrose da Cabeça do Fêmur/patologia , Perfilação da Expressão Gênica , Masculino , Camundongos , MicroRNAs/genética , Modelos Animais , Ratos , Ratos Sprague-Dawley , beta Catenina/metabolismo
12.
Polymers (Basel) ; 10(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30960726

RESUMO

Establishing the relationship among the composition, structure and property of the associated materials at the molecular level is of great significance to the rational design of high-performance electrical insulating Epoxy Resin (EP) and its composites. In this paper, the molecular models of pure Diglycidyl Ether of Bisphenol A resin/Methyltetrahydrophthalic Anhydride (DGEBA/MTHPA) and their nanocomposites containing nano-SiO2 with different particle sizes were constructed. The effects of nano-SiO2 dopants and the crosslinked structure on the micro-structure and thermomechanical properties were investigated using molecular dynamics simulations. The results show that the increase of crosslinking density enhances the thermal and mechanical properties of pure EP and EP nanocomposites. In addition, doping nano-SiO2 particles into EP can effectively improve the properties, as well, and the effectiveness is closely related to the particle size of nano-SiO2. Moreover, the results indicate that the glass transition temperature (Tg) value increases with the decreasing particle size. Compared with pure EP, the Tg value of the 6.5 Å composite model increases by 6.68%. On the contrary, the variation of the Coefficient of Thermal Expansion (CTE) in the glassy state demonstrates the opposite trend compared with Tg. The CTE of the 10 Å composite model is the lowest, which is 7.70% less than that of pure EP. The mechanical properties first increase and then decrease with the decreasing particle size. Both the Young's modulus and shear modulus reach the maximum value at 7.6 Å, with noticeable increases by 12.60% and 8.72%, respectively compared to the pure EP. In addition, the thermal and mechanical properties are closely related to the Fraction of Free Volume (FFV) and Mean Squared Displacement (MSD). The crosslinking process and the nano-SiO2 doping reduce the FFV and MSD value in the model, resulting in better thermal and mechanical properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa