RESUMO
Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder predominant in childhood. Despite existing treatments, the benefits are still limited. This study explored the effectiveness of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) loaded with miR-137 in enhancing autism-like behaviors and mitigating neuroinflammation. Utilizing BTBR mice as an autism model, the study demonstrated that intranasal administration of MSC-miR137-EVs ameliorates autism-like behaviors and inhibits pro-inflammatory factors via the TLR4/NF-κB pathway. In vitro evaluation of LPS-activated BV2 cells revealed that MSC-miR137-EVs target the TLR4/NF-κB pathway through miR-137 inhibits proinflammatory M1 microglia. Moreover, bioinformatics analysis identified that MSC-EVs are rich in miR-146a-5p, which targets the TRAF6/NF-κB signaling pathway. In summary, the findings suggest that the integration of MSC-EVs with miR-137 may be a promising therapeutic strategy for ASD, which is worthy of clinical adoption.
Assuntos
Comportamento Animal , Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , NF-kappa B , Transdução de Sinais , Animais , Masculino , Camundongos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Transtorno Autístico/terapia , Vesículas Extracelulares/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder caused by the interaction of multiple pathogenic factors. Epidemiological studies and animal experiments indicate that maternal immune activation (MIA) is closely related to the development of ASD in offspring. A large number of pro-inflammatory cytokines are transferred from the placenta to the fetal brain during MIA, which impedes fetal neurodevelopment and is accompanied by activation of immune cells and microglia. Programmed cell death protein 1 (PD-1) can be highly expressed on the surface of various activated immune cells, when combined with programmed cell death-ligand 1 (PD-L1), it can activate the PD-1/PD-L1 pathway and exert powerful immunosuppressive effects, suggesting that this immune checkpoint may have the potential to treat MIA-induced ASD. This study combined bioinformatics analysis and experimental validation to explore the efficacy of Fc-fused PD-L1 (PD-L1-Fc) in treating MIA-induced ASD. Bioinformatics analysis results showed that in human placental inflammation, IL-6 was upregulated, T cells proliferated significantly, and the PD-1/PD-L1 pathway was significantly enriched. The experimental results showed that intraperitoneal injection of poly(I:C) induced MIA in pregnant mice resulted in significant expression of IL-6 in their serum, placenta, and fetal brain. At the same time, the expression of PD-1 and PD-L1 in the placenta and fetal brain increased, CD4+ T cells in the spleen were significantly activated, and PD-1 expression increased. Their offspring mice exhibited typical ASD-like behaviors. In vitro experiments on primary microglia of offspring mice have confirmed that the expression of IL-6, PD-1, and PD-L1 is significantly increased, and PD-L1-Fc effectively reduced their expression levels. In the prefrontal cortex of MIA offspring mice, there was an increase in the expression of IL-6, PD-1, and PD-L1; activation of microglial cells, and colocalization with PD-1. Then we administered brain stereotaxic injections of PD-L1-Fc to MIA offspring mice and intraperitoneal injections to MIA pregnant mice. The results indicated that PD-L1-Fc effectively suppressed neuroinflammation in the frontal cortex of offspring mice and partially ameliorated ASD-like behaviors; MIA in pregnant mice was significantly alleviated, and the offspring mice they produced did not exhibit neuroinflammation or ASD-like behaviors. In summary, we have demonstrated the therapeutic ability of PD-L1-Fc for MIA-induced ASD, aiming to provide new strategies and insights for the treatment of ASD.
Assuntos
Transtorno do Espectro Autista , Antígeno B7-H1 , Placenta , Receptor de Morte Celular Programada 1 , Animais , Feminino , Antígeno B7-H1/metabolismo , Gravidez , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Masculino , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/prevenção & controle , Humanos , Placenta/metabolismo , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Comportamento Animal , Camundongos Endogâmicos C57BL , Transtorno Autístico/metabolismo , Transtorno Autístico/imunologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacosRESUMO
In this Letter, we propose an all-optical diffractive deep neural network modeling method based on nonlinear optical materials. First, the nonlinear optical properties of graphene and zinc selenide (ZnSe) are analyzed. Then the optical limiting effect function corresponding to the saturation absorption coefficient of the nonlinear optical materials is fitted. The optical limiting effect function is taken as the nonlinear activation function of the neural network. Finally, the all-optical diffractive neural network model based on nonlinear materials is established. The numerical simulation results show that the model can effectively improve the nonlinear representation ability of the all-optical diffractive neural network. It provides a theoretical support for the further realization of a photonic artificial intelligence chip based on nonlinear optical materials.
RESUMO
BACKGROUND: Maternal immune activation (MIA) is a significant factor inducing to autism spectrum disorder (ASD) in offspring. The fundamental principle underlying MIA is that inflammation during pregnancy impedes fetal brain development and triggers behavioural alterations in offspring. The intricate pathogenesis of ASD renders drug treatment effects unsatisfactory. Traditional Chinese medicine has strong potential due to its multiple therapeutic targets. Yigansan, composed of seven herbs, is one of the few that has been proven to be effective in treating neuro-psychiatric disorders among numerous traditional Chinese medicine compounds, but its therapeutic effect on ASD remains unknown. HYPOTHESIS: Yigansan improves MIA-induced ASD-like behaviours in offspring by regulating the IL-17 signalling pathway. METHODS: Pregnant C57BL/6J mice were intraperitoneally injected with poly(I:C) to construct MIA models and offspring ASD models. Network analysis identified that the IL-17A/TRAF6/MMP9 pathway is a crucial pathway, and molecular docking confirmed the binding affinity between the monomer of Yigansan and target proteins. qRT-PCR and Western blot were used to detect the expression levels of inflammatory factors and pathway proteins, immunofluorescence was used to detect the distribution of IL-17A, and behavioural tests were used to evaluate the ASD-like behaviours of offspring. RESULTS: We demonstrated that Yigansan can effectively alleviate MIA-induced neuroinflammation of adult offspring by regulating the IL-17A/TRAF6/MMP9 pathway, and the expression of IL-17A was reduced in the prefrontal cortex. Importantly, ASD-like behaviours have been significantly improved. Moreover, we identified that quercetin is the effective monomer for Yigansan to exert therapeutic effects. CONCLUSION: Overall, this study was firstly to corroborate the positive therapeutic effect of Yigansan in the treatment of ASD. We elucidated the relevant molecular mechanism and regulatory pathway involved, determined the optimal therapeutic dose and effective monomer, providing new solutions for the challenges of drug therapy for ASD.