RESUMO
Patients with early-onset lysosomal storage diseases are ideal candidates for prenatal therapy because organ damage starts in utero. We report the safety and efficacy results of in utero enzyme-replacement therapy (ERT) in a fetus with CRIM (cross-reactive immunologic material)-negative infantile-onset Pompe's disease. The family history was positive for infantile-onset Pompe's disease with cardiomyopathy in two previously affected deceased siblings. After receiving in utero ERT and standard postnatal therapy, the current patient had normal cardiac and age-appropriate motor function postnatally, was meeting developmental milestones, had normal biomarker levels, and was feeding and growing well at 13 months of age.
Assuntos
Doença de Depósito de Glicogênio Tipo II , Humanos , Lactente , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológicoRESUMO
OBJECTIVE: Despite exome sequencing (ES) becoming increasingly incorporated into the prenatal setting, few studies have elucidated motivations for and trust in ES and genomic research among a diverse cohort of patients and their partners. METHODS: This is a qualitative study that involved semi-structured interviews with pregnant or recently pregnant individuals and their partners, interviewed separately, in the setting of ES performed through research for a fetal structural anomaly. All interview transcripts were coded thematically and developed by a multidisciplinary team. RESULTS: Thirty-five individuals participated, the majority of whom (66%) self-identified as a racial or ethnic group underrepresented in genomic research. Many patients and their partners expressed trust in the healthcare system and research process and appreciated the extensive testing for information and closure. There were nonetheless concerns about data privacy and protection for individuals, including those underrepresented, who participated in genomic testing and studies. CONCLUSION: Our findings illustrate important elements of motivation, trust and concern related to prenatal ES performed in the research setting, taking into account the perspectives not only of diverse and underrepresented study participants but also partners of pregnant individuals.
Assuntos
Feto , Confiança , Gravidez , Feminino , Humanos , Sequenciamento do Exoma , Feto/anormalidades , Motivação , Diagnóstico Pré-NatalRESUMO
BACKGROUND: The cause of most fetal anomalies is not determined prenatally. Exome sequencing has transformed genetic diagnosis after birth, but its usefulness for prenatal diagnosis is still emerging. Nonimmune hydrops fetalis (NIHF), a fetal abnormality that is often lethal, has numerous genetic causes; the extent to which exome sequencing can aid in its diagnosis is unclear. METHODS: We evaluated a series of 127 consecutive unexplained cases of NIHF that were defined by the presence of fetal ascites, pleural or pericardial effusions, skin edema, cystic hygroma, increased nuchal translucency, or a combination of these conditions. The primary outcome was the diagnostic yield of exome sequencing for detecting genetic variants that were classified as either pathogenic or likely pathogenic according to the criteria of the American College of Medical Genetics and Genomics. Secondary outcomes were the percentage of cases associated with specific genetic disorders and the proportion of variants that were inherited. RESULTS: In 37 of the 127 cases (29%), we identified diagnostic genetic variants, including those for disorders affecting the RAS-MAPK cell-signaling pathway (known as RASopathies) (30% of the genetic diagnoses); inborn errors of metabolism and musculoskeletal disorders (11% each); lymphatic, neurodevelopmental, cardiovascular, and hematologic disorders (8% each); and others. Prognoses ranged from a relatively mild outcome to death during the perinatal period. Overall, 68% of the cases (25 of 37) with diagnostic variants were autosomal dominant (of which 12% were inherited and 88% were de novo), 27% (10 of 37) were autosomal recessive (of which 95% were inherited and 5% were de novo), 1 was inherited X-linked recessive, and 1 was of uncertain inheritance. We identified potentially diagnostic variants in an additional 12 cases. CONCLUSIONS: In this large case series of 127 fetuses with unexplained NIHF, we identified a diagnostic genetic variant in approximately one third of the cases. (Funded by the UCSF Center for Maternal-Fetal Precision Medicine and others; ClinicalTrials.gov number, NCT03412760.).
Assuntos
Sequenciamento do Exoma , Variação Genética , Hidropisia Fetal/diagnóstico , Hidropisia Fetal/genética , Diagnóstico Pré-Natal , Feminino , Humanos , Gravidez , PrognósticoRESUMO
OBJECTIVE: There is increasing evidence supporting the clinical utility of next generation sequencing for identifying fetal genetic disorders. However, there are limited data on the demand for and accessibility of these tests, as well as payer coverage in the prenatal context. We sought to identify clinician perspectives on the utility of prenatal exome sequencing (ES) and on equitable access to genomic technologies for the care of pregnancies complicated by fetal structural anomalies. METHOD: We conducted two focus group discussions and six interviews with a total of 13 clinicians (11 genetic counselors; 2 Maternal Fetal Medicine/Geneticists) from U.S. academic centers and community clinics. RESULTS: Participants strongly supported ES for prenatal diagnostic testing in pregnancies with fetal structural anomalies. Participants emphasized the value of prenatal ES as an opportunity for a continuum of care before, during, and after a pregnancy, not solely as informing decisions about abortions. Cost and coverage of the test was the main access barrier, and research was the main pathway to access ES in academic centers. CONCLUSION: Further integrating the perspectives of additional key stakeholders are important for understanding clinical utility, developing policies and practices to address access barriers, and assuring equitable provision of prenatal diagnostic testing.
Assuntos
Aborto Espontâneo , Ultrassonografia Pré-Natal , Gravidez , Feminino , Humanos , Sequenciamento do Exoma , Primeiro Trimestre da Gravidez , Feto/diagnóstico por imagem , Diagnóstico Pré-NatalRESUMO
Lysosomal storage disorders (LSDs) are a group of monogenic condition, with many characterized by an enzyme deficiency leading to the accumulation of an undegraded substrate within the lysosomes. For those LSDs, postnatal enzyme replacement therapy (ERT) represents the standard of care, but this treatment has limitations when administered only postnatally because, at that point, prenatal disease sequelae may be irreversible. Furthermore, most forms of ERT, specifically those administered systemically, are currently unable to access certain tissues, such as the central nervous system (CNS), and furthermore, may initiate an immune response. In utero enzyme replacement therapy (IUERT) is a novel approach to address these challenges evaluated in a first-in-human clinical trial for IUERT in LSDs (NCT04532047). IUERT has numerous advantages: in-utero intervention may prevent early pathology; the CNS can be accessed before the blood-brain barrier forms; and the unique fetal immune system enables exposure to new proteins with the potential to prevent an immune response and may induce sustained tolerance. However, there are challenges and limitations for any fetal procedure that involves two patients. This article reviews the current state of IUERT for LSDs, including its advantages, limitations, and potential future directions for definitive therapies.
Assuntos
Terapia de Reposição de Enzimas , Doenças por Armazenamento dos Lisossomos , Gravidez , Feminino , Humanos , Terapia de Reposição de Enzimas/métodos , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/complicações , Sistema Nervoso Central , LisossomosRESUMO
BACKGROUND: Next-generation sequencing is increasingly used in prenatal diagnosis. Targeted gene panels and exome sequencing are both available, but the comparative diagnostic yields of these approaches are not known. OBJECTIVE: We compared the diagnostic yield of exome sequencing with the simulated application of commercial targeted gene panels in a large cohort of fetuses with nonimmune hydrops fetalis. STUDY DESIGN: This was a secondary analysis of a cohort study of exome sequencing for nonimmune hydrops fetalis, in which recruitment, exome sequencing, and phenotype-driven variant analysis were completed in 127 pregnancies with features of nonimmune hydrops fetalis. An Internet search was performed to identify commercial laboratories that offer targeted gene panels for the prenatal evaluation of nonimmune hydrops fetalis or for specific disorders associated with nonimmune hydrops fetalis using the terms "non-immune hydrops fetalis," "fetal non-immune hydrops," "hydrops," "cystic hygroma," "lysosomal storage disease," "metabolic disorder," "inborn error of metabolism," "RASopathy," and "Noonan." Our primary outcome was the proportion of all genetic variants identified through exome sequencing that would have been identified if a targeted gene panel had instead been used. The secondary outcomes were the proportion of genetic variants that would have been identified by type of targeted gene panel (general nonimmune hydrops fetalis, RASopathy, or metabolic) and the percent of variants of uncertain significance that would have been identified on the panels, assuming 100% analytical sensitivity and specificity of panels for variants in the included genes. RESULTS: Exome sequencing identified a pathogenic or likely pathogenic variant in 37 of 127 cases (29%) in a total of 29 genes. A variant of uncertain significance, strongly suspected to be associated with the phenotype, was identified in another 12 cases (9%). We identified 7 laboratories that offer 10 relevant targeted gene panels; 6 are described as RASopathy panels, 3 as nonimmune hydrops fetalis panels, and 1 as a metabolic panel. The median number of genes included on each of these panels is 22, ranging from 11 to 148. Had a nonimmune hydrops fetalis targeted gene panel been used instead of exome sequencing, 13 to 15 of the 29 genes (45%-52%) identified in our nonimmune hydrops fetalis cohort would have been sequenced, and 19 to 24 of the pathogenic variants (51%-62%) would have been detected. The yield was predicted to be the lowest with the metabolic panel (11%) and the highest with the largest nonimmune hydrops fetalis panel (62%). The largest nonimmune hydrops fetalis targeted gene panel would have had a diagnostic yield of 18% compared with 29% with exome sequencing. The exome sequencing platform used provided 30× or more coverage for all of the exons on the commercial targeted gene panels, supporting our assumption of 100% analytical sensitivity for exome sequencing. CONCLUSION: The broader coverage of exome sequencing for genetically heterogeneous disorders, such as nonimmune hydrops fetalis, made it a superior alternative to targeted gene panel testing.
Assuntos
Hidropisia Fetal/diagnóstico , Diagnóstico Pré-Natal , Adulto , Estudos de Coortes , Feminino , Idade Gestacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hidropisia Fetal/genética , Valor Preditivo dos Testes , Gravidez , Sequenciamento do ExomaRESUMO
OBJECTIVE: Exome sequencing (ES) offers the ability to assess for variants in thousands of genes and is particularly useful in the setting of fetal anomalies. However, the ES pipeline relies on a thorough understanding of an individual patient's phenotype, which may be limited in the prenatal setting. Additional pathology evaluations in the pre- and postnatal settings can add phenotypic details important for clearly establishing and characterizing a diagnosis. METHODS: This is a case series of prenatal ES performed at our institution in which pathology evaluations, including autopsy, dysmorphology examination, histology, and peripheral blood smear, augmented the understanding of the fetal phenotype. ES was performed at our institution and a multidisciplinary panel reviewed and classified the variants for each case. RESULTS: We present four cases wherein pathology evaluations were beneficial for supporting a perinatal diagnosis identified with ES. In each of these cases, pathology findings provided additional data to support a more complete understanding of the relationship between the perinatal phenotype and variants identified with ES. CONCLUSION: These cases highlight challenges of perinatal ES related to incomplete prenatal phenotyping, demonstrate the utility of pathology evaluations to support diagnoses identified with ES, and further characterize the disease manifestations of specific genetic variants.
Assuntos
Exoma , Feto , Feminino , Feto/diagnóstico por imagem , Humanos , Gravidez , Diagnóstico Pré-Natal , Ultrassonografia Pré-Natal , Sequenciamento do ExomaRESUMO
OBJECTIVE: We aimed to determine the frequency of accepting secondary findings in families undergoing exome sequencing in prenatal and pediatric settings. METHODS: This was a secondary analysis of prospectively enrolled patients undergoing trio exome sequencing for congenital anomalies or developmental disorders in prenatal and pediatric settings, in which families were offered receiving secondary findings (initially assessed in the proband and, if identified, then in the parents). The primary outcome was frequency of accepting secondary findings. Secondary outcomes included frequency of acceptance in prenatal versus pediatric settings, and sociodemographic differences between those who accepted versus declined secondary findings. RESULTS: There were 682 families included in the cohort (289 prenatal and 393 pediatric). Overall, 84% (576/682) of families accepted secondary findings: 86.2% (249/289) of families undergoing prenatal versus 83.2% (327/393) pediatric (p = 0.30) testing. Secondary findings were identified in 2.6% (15/576) of cases, with no difference between prenatal and pediatric settings. There were no differences in sociodemographics between families that accepted versus declined secondary findings. CONCLUSION: The majority of families undergoing exome sequencing accepted secondary findings; this did not differ in prenatal versus pediatric settings. This highlights the need for guidance surrounding the offer of secondary findings in the prenatal setting.
Assuntos
Exoma , Família , Criança , Estudos de Coortes , Feminino , Humanos , Pais , Gravidez , Diagnóstico Pré-Natal , Sequenciamento do ExomaRESUMO
PURPOSE: Numerous etiologies may lead to nonimmune hydrops fetalis (NIHF), and the underlying cause often remains unclear. We aimed to determine the proportion of NIHF cases in which the etiology was clearly determined in a large, contemporary, and diverse cohort, as well as to describe the etiologies with a focus on genetic causes. METHODS: Retrospective review of NIHF cases between 2015 and 2017 from the five University of California Fetal-Maternal Consortium sites. Singleton pregnancies with prenatally diagnosed NIHF were included, and cases with maternal alloimmunization were excluded. Cases were categorized as being of confirmed, suspected, or unknown etiology. RESULTS: Sixty-five NIHF cases were identified. Forty-six percent (30/65) remained of unknown etiology, while 9.2% (6/65) had a suspected etiology and 44.6% (29/65) were of confirmed etiology. Among confirmed cases, 11 resulted from aneuploidy; 7 from fetal structural anomalies; 2 each from fetal arrhythmia, Noonan syndrome, and generalized lymphatic dysplasia; and 1 each from arthrogryposis, parvovirus, neonatal alloimmune thrombocytopenia, fetal goiter, and Kasabach-Merritt syndrome. CONCLUSION: In this contemporary, multicenter study, the cause of prenatally diagnosed NIHF was confirmed in only 44% of cases, and a genetic etiology was found in only 25% of those that received standard of care genetic testing.
Assuntos
Hidropisia Fetal/etiologia , Hidropisia Fetal/genética , Adolescente , Adulto , Aneuploidia , California , Estudos de Coortes , Feminino , Feto , Humanos , Recém-Nascido , Masculino , Gravidez , Primeiro Trimestre da Gravidez , Cuidado Pré-Natal , Estudos Retrospectivos , Ultrassonografia Pré-NatalRESUMO
Alpha thalassemia major (ATM) is a hemoglobinopathy that usually results in perinatal demise if in utero transfusions (IUTs) are not performed. We established an international registry (NCT04872179) to evaluate the impact of IUTs on survival to discharge (primary outcome) as well as perinatal and neurodevelopmental secondary outcomes. Forty-nine patients were diagnosed prenatally, 11 were diagnosed postnatally, and all 11 spontaneous survivor genotypes had preserved embryonic zeta-globin levels. We compared 3 groups of patients; group 1, prenatally diagnosed and alive at hospital discharge (n = 14), group 2, prenatally diagnosed and deceased perinatally (n = 5), and group 3, postnatally diagnosed and alive at hospital discharge (n = 11). Group 1 had better outcomes than groups 2 and 3 in terms of the resolution of hydrops, delivery closer to term, shorter hospitalizations, and more frequent average or greater neurodevelopmental outcomes. Earlier IUT initiation was correlated with higher neurodevelopmental (Vineland-3) scores (r = -0.72, P = .02). Preterm delivery after IUT was seen in 3/16 (19%) patients who continued their pregnancy. When we combined our data with those from 2 published series, patients who received ≥2 IUTs had better outcomes than those with 0 to 1 IUT, including resolution of hydrops, delivery at ≥34 weeks gestation, and 5-minute appearance, pulse, grimace, activity, and respiration scores ≥7. Neurodevelopmental assessments were normal in 17/18 of the ≥2 IUT vs 5/13 of the 0 to 1 IUT group (OR 2.74; P = .01). Thus, fetal transfusions enable the survival of patients with ATM and normal neurodevelopment, even in those patients presenting with hydrops. Nondirective prenatal counseling for expectant parents should include the option of IUTs.
Assuntos
Talassemia alfa , Gravidez , Recém-Nascido , Feminino , Humanos , Talassemia alfa/complicações , Talassemia alfa/terapia , Transfusão de Sangue , Transfusão de Sangue Intrauterina/efeitos adversos , Transfusão de Sangue Intrauterina/métodos , Idade Gestacional , Edema/etiologiaRESUMO
Genomic sequencing has been increasingly utilized for prenatal diagnosis in recent years and this trend is likely to continue. However, decision-making for parents in the prenatal period is particularly fraught, and prenatal sequencing would significantly expand the complexity of managing health risk information, reproductive options, and healthcare access. This qualitative study investigates decision-making processes amongst parents who enrolled or declined to enroll in the prenatal arm of the California-based Program in Prenatal and Pediatric Genome Sequencing (P3EGS), a study in the Clinical Sequencing Evidence-Generating Research (CSER) consortium that offered whole exome sequencing for fetal anomalies with a focus on underrepresented groups in genomic research. Drawing on the views of 18 prenatal families who agreed to be interviewed after enrolling (n = 15) or declining to enroll (n = 3) in P3EGS, we observed that the timing of sequencing, coupled with unique considerations around experiences of time during pregnancy and prenatal testing, intersect with structural supports beyond the clinic to produce preferences for and against prenatal sequencing and to contain the threat of unwelcome, uncertain knowledge. Particularly for those without structural supports, finding out consequential information may be more palatable after the birth, when the first stage of the uncertain future has been revealed. Future research should examine the role of temporality in decision-making around prenatal genomic sequencing across diverse population cohorts, in order to observe more precisely the role that structural barriers play in patient preferences.
RESUMO
BACKGROUND: To identify genes associated with congenital diaphragmatic hernia (CDH) to help understand the etiology and inform prognosis. METHODS: We performed exome sequencing on fetuses with CDH and their parents to identify rare genetic variants likely to mediate risk. We reviewed prenatal characteristics and neonatal outcomes. RESULTS: Data were generated for 22 parent-offspring trios. Six Likely Damaging (LD) variants were identified in five families (23 %). Three LD variants were in genes that contain variants in other CDH cohorts (NR2F2, PTPN11, WT1), while three were in genes that do not (CTR9, HDAC6, TP53). Integrating these data bolsters the evidence of association of NR2F2, PTPN11, and WT1 with CDH in humans. Of the five fetuses with a genetic diagnosis, one was terminated, two underwent perinatal demise, while two survived until repair. CONCLUSIONS: Exome sequencing expands the diagnostic yield of genetic testing in CDH. Correlating CDH patients' exomes with clinical outcomes may enable personalized counseling and therapies.
Assuntos
Fator II de Transcrição COUP/genética , Hérnias Diafragmáticas Congênitas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas WT1/genética , Exoma/genética , Feminino , Feto/anormalidades , Feto/diagnóstico por imagem , Testes Genéticos/métodos , Testes Genéticos/estatística & dados numéricos , Hérnias Diafragmáticas Congênitas/diagnóstico , Humanos , Masculino , Gravidez , Ultrassonografia Pré-NatalRESUMO
Genomic sequencing results need to be effectively communicated across all populations and practice settings. Projects in the Clinical Sequencing Evidence-Generating Research (CSER) consortium enroll diverse racial/ethnic and medically underserved participants across various clinical contexts. This article explores a set of CSER results disclosure cases to expand the evidence base on experiences returning genomic results. Case details were collected using a structured set of questions. We identified common themes in the case set, and assessed challenges and strategies in achieving six relevant results disclosure objectives. CSER-affiliated patient/community stakeholder impressions of the findings were solicited via video conference calls. Seventeen cases across six CSER projects were included. Case themes sorted into four categories: (1) factors influencing participant understanding, (2) participant emotional response, (3) disease burden, and (4) logistical challenges. Challenges meeting results disclosure objectives included a lack of dialogue, health literacy level, unexpected findings, and complex concepts. Strategies were consistent with traditional genetic counseling practice, but also highlighted approaches being evaluated in CSER projects. Patient/community stakeholders supported the identified themes and provided additional suggestions to improve patient understanding and engagement. These experiences add valuable insights into adapting genomic results disclosure practices to best serve all patient populations.