Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Nano Lett ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047072

RESUMO

Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.

2.
Nano Lett ; 24(10): 2980-2988, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38311846

RESUMO

The emergence of antibiotic and antifungal resistant microorganisms represents nowadays a major public health issue that might push humanity into a post-antibiotic/antifungal era. One of the approaches to avoid such a catastrophe is to advance rapid antibiotic and antifungal susceptibility tests. In this study, we present a compact, optical fiber-based nanomotion sensor to achieve this goal by monitoring the dynamic nanoscale oscillation of a cantilever related to microorganism viability. High detection sensitivity was achieved that was attributed to the flexible two-photon polymerized cantilever with a spring constant of 0.3 N/m. This nanomotion device showed an excellent performance in the susceptibility tests of Escherichia coli and Candida albicans with a fast response in a time frame of minutes. As a proof-of-concept, with the simplicity of use and the potential of parallelization, our innovative sensor is anticipated to be an interesting candidate for future rapid antibiotic and antifungal susceptibility tests and other biomedical applications.


Assuntos
Antibacterianos , Antifúngicos , Fibras Ópticas , Testes de Sensibilidade Microbiana , Candida albicans , Escherichia coli
3.
Opt Lett ; 49(3): 446-449, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300027

RESUMO

Sapphire fiber Bragg grating (SFBG) is a promising high-temperature strain sensor due to its melting point of 2045°C. However, the study on the long-term stability of SFBG under high temperature with an applied strain is still missing. In this paper, we reported for the first time to our knowledge on the critical temperature point of plastic deformation of the SFBG and demonstrated that the SFBG strain sensor can operate stably below 1200°C. At first, we experimentally investigated the topography and the spectral characteristics of the SFBG at different temperatures (i.e., 25°C, 1180°C, and 1600°C) with applied 650 µÎµ. The reflection peak of the SFBG exhibits a redshift of about 15 nm and broadens gradually within 8 h at 1600°C, and the tensile force value decreases by 0.60 N in this process. After the test, the diameter of the SFBG region decreases from 100 to 88.6 µm, and the grating period is extended from 1.76 to 1.79 µm. This indicates that the plastic deformation of the SFBG happened indeed, and it was elongated irreversibly. Moreover, the stability of the Bragg wavelength of the SFBG under high temperature with the applied strain was evaluated. The result demonstrates the SFBG can be used to measure strain reliably below 1200°C. Furthermore, the strain experiments of SFBG at 25°C, 800°C, and 1100°C have been carried out. A linear fitting curve with high fitness (R2 > 0.99) and a lower strain measurement error (<15 µÎµ) can be obtained. The aforementioned results make SFBG promising for high-temperature strain sensing in many fields, such as, power plants, gas turbines, and aerospace vehicles.

4.
Opt Lett ; 49(5): 1273-1276, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426991

RESUMO

An optical frequency domain reflectometry (OFDR) shape sensor was demonstrated based on a femtosecond-laser-inscribed weak fiber Bragg grating (WFBG) array in a multicore fiber (MCF). A WFBG array consisting of 60 identical WFBGs was successfully inscribed in each core along a 60 cm long MCF using the femtosecond-laser point-by-point technology, where the length and space of each WFBG were 2 and 8 mm, respectively. The strain distribution of each core in two-dimensional (2D) and three-dimensional (3D) shape sensing was successfully demodulated using the traditional cross correlation algorithm, attributed to the accurate localization of each WFBG. The minimum reconstruction error per unit length of the 2D and 3D shape sensors has been improved to 1.08% and 1.07%, respectively, using the apparent curvature vector method based on the Bishop frame.

5.
Opt Lett ; 49(15): 4146-4149, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090880

RESUMO

Limited by the multiplexing number of fiber Bragg grating (FBG), further improvement in the length of 3D shape sensing based on FBG technology is challenging. In this Letter, a wavelength-division and space-division multiplexing multicore fiber grating method is proposed, which extends the sensing length. Employing the femtosecond-laser point-by-point technology, we inscribed WDM grating arrays in six outer cores of a seven-core fiber, respectively. Three cores were utilized as a segment for shape sensing, and two such segments were offset by a specific length and combined to form a shape sensor. Utilizing an FBG interrogator, the proposed shape sensor achieved 2D and 3D shape sensing at a length of 967 mm and effectively mitigated the effects of temperature variations. In experiments, maximum shape reconstruction errors per unit lengths are 1.89%, 2.72%, and 1.47% for 2D shape, 3D shape, and an arbitrary shape under variable temperature conditions, respectively. The proposed method holds promise for further extending the shape sensing length by utilizing multicore fibers or fiber clusters containing more cores.

6.
Opt Lett ; 49(3): 494-497, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300042

RESUMO

We demonstrate a tunable and fully enclosed fiber-based Bessel beam generator that has the potential for applications in a tough environment. This generator consists of a few-mode fiber (FMF), a short section of graded index fiber (GIF), and a 3D-printed helical axicon. The FMF provides tunable modes that carry an orbital angular momentum (OAM). The GIF was fused to the FMF to expand and collimate the generated modes. The helical axicon was 3D-printed on the GIF tip without any holes or gaps, which reshapes the OAM modes into Bessel modes and adds an additional helical phase structure to them, resulting in the generation of zeroth-order, first-order, and second-order Bessel beams. The fully enclosed structure provides high mechanical strength and optical stability, which enable the generator to be suitable for imaging or particle manipulation in a complex liquid or air environment.

7.
Opt Lett ; 49(5): 1233-1236, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426981

RESUMO

We demonstrate a novel, to the best of our knowledge, high-temperature pressure sensor based on a highly birefringent fiber Bragg grating (Hi-Bi FBG) fabricated in a dual side-hole fiber (DSHF). The Hi-Bi FBG is generated by a femtosecond laser directly written sawtooth structure in the DSHF cladding along the fiber core through the slow axis (i.e., the direction perpendicular to the dual-hole axis). The sawtooth structure serves as an in-fiber stressor and also generates Bragg resonance due to its periodicity. The DSHF was etched by hydrofluoric acid to increase its pressure sensitivity, and the diameter of two air holes was enlarged from 38.2 to 49.6 µm. A Hi-Bi FBG with a birefringence of up to 1.8 × 10-3 was successfully created in the etched DSHF. Two distinct reflection peaks could be observed by using a commercial FBG interrogator. Moreover, pressure measurement from 0 to 3 MPa at a high temperature of 700°C was conducted by monitoring the birefringence-induced peak splits and achieved a high-pressure sensitivity of -21.2 pm/MPa. The discrimination of the temperature and pressure could be realized by simultaneously measuring the Bragg wavelength shifts and peak splits. Furthermore, a wavelength-division-multiplexed (WDM) Hi-Bi FBG array was also constructed in the DSHF and was used for quasi-distributed high-pressure sensing up to 3 MPa. As such, the proposed femtosecond laser-inscribed Hi-Bi FBG is a promising tool for high-temperature pressure sensing in harsh environments, such as aerospace vehicles, nuclear reactors, and petrochemical industries.

8.
Sensors (Basel) ; 24(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257435

RESUMO

We propose a humidity sensor using an excessively tilted fiber grating (Ex-TFG) coated with agarose fabricated using femtosecond laser processing. The processed grating showcases remarkable differentiation between TE and TM modes, achieving an exceptionally narrow bandwidth of approximately 1.5 nm and an impressive modulation depth of up to 15 dB for both modes. We exposed the agarose-coated TFG sensor to various relative humidity levels and monitored the resonance wavelength to test its humidity sensing capability. Our findings demonstrated that the sensor exhibited a rapid response time (2-4 s) and showed a high response sensitivity (18.5 pm/%RH) between the humidity changes and the resonant wavelength shifts. The high sensitivity, linearity, repeatability, low hysteresis, and excellent long-term stability of the TFG humidity sensor, as demonstrated in our experimental results, make it an attractive option for environmental monitoring or biomedical diagnosis.

9.
Nano Lett ; 23(17): 7975-7982, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642385

RESUMO

Second-harmonic generation (SHG) is a noninvasive imaging technique that enables the exploration of physiological structures without the use of an exogenous label. However, traditional SHG imaging is limited by optical diffraction, which restricts the spatial resolution. To break this limitation, we developed a novel approach called multifocal structured illumination microscopy-SHG (MSIM-SHG). By combination of SHG with MSIM, SHG-based super-resolution imaging of material molecules can be achieved, and this SHG super-resolution imaging has a wide range of applications for biological tissues and cells. MSIM-SHG achieved a lateral full width at half-maximum (fwhm) of 147 ± 13 nm and an axial fwhm of 493 ± 47 nm by imaging zinc oxide (ZnO) particles. Furthermore, MSIM-SHG was utilized to quantify collagen fiber alignment in various tissues such as the ovary, muscle, heart, kidney, and cartilage, demonstrating its feasibility for identifying collagen characteristics. MSIM-SHG has potential as a powerful tool for clinical diagnosis and biological research.


Assuntos
Microscopia , Microscopia de Geração do Segundo Harmônico , Feminino , Humanos , Iluminação , Matriz Extracelular , Coração
10.
Opt Express ; 31(3): 3831-3838, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785366

RESUMO

We propose and experimentally demonstrate a femtosecond laser plane-by-plane (Pl-b-Pl) technology for inscription of high-quality fiber Bragg gratings (FBGs). The spherical aberration (SA) was introduced to elongate the focal volume, and then combined with the scanning process, an expanded rectangular refractive index modification (RIM) region can be achieved. Such RIM regions exhibit a length of 15 µm and a width of 14 µm. Note that it consists of a negative region and a positive region. We have systematically studied the influence of the overlap between the RIM region and fiber core on the spectrum of FBG. After optimizing, the core of a conventional single-mode fiber (SMF) is covered completely by using the positive RIM region, resulting in a significant enhancement of the coupling strength coefficient (i.e., 3177.6 m-1). A 500 µm long FBG assembled by using these RIM regions can achieve a high reflectivity of 95.83%. Moreover, the cladding mode resonances in transmission spectrum are suppressed thoroughly, since the localized effect in RIM region was avoided. In addition, this FBG exhibits a high birefringence of 2.13 × 10-4. Therefore, the proposed fabrication method can be used to inscribe high-quality FBGs that could be used in many fields such as communication, fiber laser, polarization-selective filtering and multi-parameter sensing.

11.
Opt Express ; 31(3): 5102-5112, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785461

RESUMO

There are urgent demands of ultraviolet (UV) photodetectors with high sensitivity and fast response due to the wide application of ultraviolet light in the fields of medical treatment, space exploration, optical communication and semiconductor industry. The response speed of traditional ZnO-based UV photodetectors is always limited by the carrier mobility and electrical resistance caused by the external circuits. Utilizing the all-optical detection method may replace the complex circuit structure and effectively improve the response speed of photodetectors. Here, a fast-response fiber-optic UV photodetector is proposed, where a ZnO micro-pillar is fixed on the end face of a fiber-tip and acts as a Fabry-Pérot interferometer (FPI). Under the irradiation of UV light, the photo-generated carriers change the refractive index of the ZnO micro-pillar, leading to a redshift of the interference wavelengths of the ZnO FPI. To enhance this effect, a discontinuous Ag film with an island-like structure is coated on the surface of ZnO micro-pillars through magnetron sputtering, and therefore the sensitivity of the proposed device achieves to 1.13 nm/(W·cm-2), which is 3.9 times higher than that of without Ag-decoration, due to the intensification of photo-carrier change with the help of the Schottky junction formed between Ag film and ZnO micro-pillar. Meanwhile, since the response speed of the proposed device is mainly determined by the temporal RI change of ZnO micro-pillar, the fiber-optic UV photodetector also shows very fast response with a rise time of 35 ns and a decay time of 40 µs. The demonstrated structure takes full advantage of optical fiber devices, exhibiting compactness, flexibility, fast response and immune to electromagnetic interference, which paves a new way for the next generation of photodetection devices.

12.
Opt Express ; 31(5): 8738-8747, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859983

RESUMO

We demonstrated a hybrid sensor of fiber Bragg grating (FBG) and Fabry-Perot interferometer (FPI) based on fiber-tip microcantilever for simultaneous measurement of temperature and humidity. The FPI was developed using femtosecond (fs) laser-induced two-photon polymerization to print the polymer microcantilever at the end of a single-mode fiber, achieving a humidity sensitivity of 0.348 nm/%RH (40% to 90%, when temperature = 25 °C ± 0.1 °C), and a temperature sensitivity of -0.356 nm/°C (25 to 70 °C, when RH% = 40% ± 1%). The FBG was line-by-line inscribed in the fiber core by fs laser micromachining, with a temperature sensitivity of 0.012 nm/ °C (25 to 70 °C, when RH% = 40% ± 1%). As the shift of FBG-peak on the reflection spectra is only sensitive to temperature rather than humidity, the ambient temperature can be directly measured by the FBG. The output of FBG can also be utilized as temperature compensation for FPI-based humidity measurement. Thus, the measured result of relative humidity can be decoupled from the total shift of FPI-dip, achieving the simultaneous measurement of humidity and temperature. Gaining the advantages of high sensitivity, compact size, easy packaging, and dual parameter measurement, this all-fiber sensing probe is anticipated to be applied as the key component for various applications involving the simultaneous measurement of temperature and humidity.

13.
Opt Lett ; 48(2): 452-455, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638481

RESUMO

We demonstrate a novel, to the best of our knowledge, two-dimensional vector bending sensor based on orthogonal helical Bragg gratings inscribed in the cladding of a conventional single-mode fiber (SMF). The helical cladding fiber Bragg gratings (HCFBGs) are created by using a femtosecond laser direct writing technology and a quarter-pitch graded index fiber (GIF) is used in front of the HCFBGs to diverge the core mode into fiber cladding. In contrast to the multimode resonance observed in conventional cladding Bragg gratings inscribed by using a femtosecond laser point-by-point (PbP) or line-by-line (LbL) technology, the proposed HCFBGs exhibit stable narrowband single-mode Bragg resonance. An HCFBG with a low peak reflectivity of -50.77 dB and a narrow bandwidth of 0.66 nm was successfully fabricated by using a lateral offset of 45 µm between the HCFBG and the fiber core axis. Moreover, two orthogonal HCFBGs were fabricated in the SMF cladding and used for vector bending sensing. Strong orientation dependence could be seen in omnidirectional bending measurement, exhibiting a maximum bending sensitivity of up to 50.0 pm/m-1, which is comparable to that in a multicore FBG. In addition, both the orientation and amplitude of bending vector could be reconstructed by using the measured Bragg wavelength shifts in two orthogonal HCFBGs. As such, the proposed HCFBGs could be used in many applications, such as structural health monitoring, robotic arms, and medical instruments.

14.
Opt Lett ; 48(7): 1922-1925, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221800

RESUMO

A microbubble-probe whispering gallery mode resonator with high displacement resolution and spatial resolution for displacement sensing is proposed. The resonator consists of an air bubble and a probe. The probe has a diameter of ∼5 µm that grants micron-level spatial resolution. Fabricated by a CO2 laser machining platform, a universal quality factor of over 106 is achieved. In displacement sensing, the sensor exhibits a displacement resolution of 74.83 pm and an estimated measurement span of 29.44 µm. As the first microbubble probe resonator for displacement measurement, the component shows advantages in performance, and exhibits a potential in sensing with high precision.

15.
Opt Lett ; 48(17): 4540-4543, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656548

RESUMO

We demonstrated a long-range and centimeter-spatial-resolution optical frequency domain reflectometry (OFDR) system based on an ultra-linear broadband optical frequency sweep. The high nonlinear sweeping effect of the distributed feedback (DFB) diode laser was suppressed by a pre-distortion method, ensuring that the injection-locking process remained stable during fast tuning over a large span. An optical linear frequency sweep (LFS) with a sweep range and sweep rate of up to 60 GHz and 15 THz/s, respectively, was ultimately obtained by optimizing the injection-locking system. The high performance OFDR based on the proposed LFS achieved a sampling spatial resolution of 1.71 mm. Furthermore, distributed strain sensing was implemented with high-spatial resolutions of about 5 cm and 7 cm in the measurement range over 1 km and 2 km, respectively.

16.
Opt Lett ; 48(21): 5819-5822, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910767

RESUMO

A wide-range OFDR strain sensor was demonstrated based on femtosecond-laser-inscribed weak fiber Bragg grating (WFBG) array in standard SMF. A WFBG array consisting of 110 identical WFBGs was successfully fabricated along a 56 cm-long SMF. Compared with SMF, the cross-correlation coefficient of WFBG array was improved to 0.9 under the strain of 10,000 µÎµ. The position deviation under the strain of 10,000 µÎµ, i.e., 2.5 mm, could be accurately obtained and compensated simply by using peak finding algorithm. The maximum measurable strain of single- and multi-point strain sensing was up to 10,000 µÎµ without using any additional algorithms, where the sensing spatial resolution was 5 mm.

17.
Opt Lett ; 48(9): 2233-2236, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126242

RESUMO

A tunable mode convertor is experimentally demonstrated based on a fiber Bragg grating (FBG), which is fabricated in a graded-index nine-mode fiber by using a femtosecond laser. Nine linearly polarized (LP) modes were excited and the coupling efficiency of them can reach 90%. By adjusting the polarization controller, the ±1st-, ±2nd-, ±3rd-, and ±4th-order orbital angular momentum (OAM) modes were excited, which means the OAM tuning of 0-±1ℏ, 0-±2ℏ, 0-±3ℏ, and 0-±4ℏ were achieved. LP21/LP02, LP31/LP12, LP41/LP22/LP03 modes were successfully tuned at 1556.00 nm, 1555.10 nm, and 1554.25 nm by twisting the FBG, respectively. Moreover, combined with polarization and torsion control, the tuning between 0th- and -2nd-order OAM has been realized, which is converted from the tuning between LP02 and LP21. By using this method, the OAM tuning of ±1-±3ℏ and ±4-0-±2ℏ may be further realized theoretically.

18.
Opt Lett ; 48(24): 6573-6576, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099802

RESUMO

We propose a Mach-Zehnder interferometer based on an in-fiber ZnO microwire structure for ultraviolet sensing. The device undergoes femtosecond laser micromachining and chemical etching on a single-mode optical fiber initially, creating a microgroove that extends to half of the core's depth, into which a single ZnO microwire is transferred. The ZnO microwire and the remaining core are used as the sensing arm and the reference arm, respectively, forming a Mach-Zehnder interferometer. To enhance the stability and the sensitivity, ZnO nanoparticles are filled into the microgroove after the ZnO microwire is transferred. The fabricated device exhibits a sensitivity of 0.86 nm/(W·cm-2) for ultraviolet sensing, along with a response time of 115 ns (rise time) and 133 µs (decay time), respectively. The proposed sensor exhibits good ultraviolet sensitivity, offering a novel approach for ultraviolet sensing technology.

19.
Opt Express ; 30(16): 28710-28719, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299060

RESUMO

We demonstrate the fabrication of a new highly birefringent cladding fiber Bragg grating (Hi-Bi CFBG) consisting of a pair of sawtooth stressors near the fiber core by using a femtosecond laser direct writing technology. The unique sawtooth structure serves as in-fiber stressor and also generates Bragg resonance due to its periodicity. After optimization of laser pulse energy, the Hi-Bi CFBG with a high birefringence of 2.2 × 10-4 and a low peak reflectivity of ∼ -24.5 dB (corresponding to ∼ 0.3%) was successfully fabricated in a conventional single-mode fiber (SMF). And then, a wavelength-division-multiplexed Hi-Bi CFBGs array and an identical Hi-Bi CFBGs array were successfully constructed. Moreover, a simultaneous measurement of torsion and strain at high temperature of 700 °C was realized by using the fabricated Hi-Bi CFBG, in which the torsion can be deduced by monitoring the reflection difference between the two polarization peaks and strain can be detected by measuring polarization peak wavelength. A high torsion sensitivity of up to 80.02 dB/(deg/mm) and a strain sensitivity of 1.06 pm/µÉ› were achieved. As such, the proposed Hi-Bi CFBG can be used as a mechanical sensor in many areas, especially in structural health monitoring at extreme conditions.

20.
Opt Express ; 30(3): 4402-4411, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209678

RESUMO

A method employing femtosecond lasers to inscribe helical long period fiber grating (HLPFG) for exciting orbital angular momentum (OAM) of light is experimentally demonstrated. In this method, the refractive index modulation (RIM) of HLPFG is realized by three-dimensional translation of a fiber without rotation, indicating better stability, repeatability and flexibility. The coupling efficiency can be customized by varying the radius of the helical RIM, except laser energy. The characteristics of phase and polarization purity of the coupled modes in HLPFGs are studied. Results show that HLPFGs can directly excite OAM modes, the polarization state and helical phase of the mode can be adjusted independently, and the purity is the highest at resonant wavelength, over 91%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa