Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Sci ; 29(1): 9, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130876

RESUMO

BACKGROUND: K1 capsular polysaccharide (CPS)-associated Klebsiella pneumoniae is the primary cause of pyogenic liver abscesses (PLA) in Asia. Patients with PLA often have serious complications, ultimately leading to a mortality of ~ 5%. This K1 CPS has been reported as a promising target for development of glycoconjugate vaccines against K. pneumoniae infection. The pyruvylation and O-acetylation modifications on the K1 CPS are essential to the immune response induced by the CPS. To date, however, obtaining the fragments of K1 CPS that contain the pyruvylation and O-acetylation for generating glycoconjugate vaccines still remains a challenge. METHODS: We analyzed the digested CPS products with NMR spectroscopy and mass spectrometry to reveal a bacteriophage-derived polysaccharide depolymerase specific to K1 CPS. The biochemical and biophysical properties of the enzyme were characterized and its crystal structures containing bound CPS products were determined. We also performed site-directed mutagenesis, enzyme kinetic analysis, phage absorption and infectivity studies, and treatment of the K. pneumoniae-infected mice with the wild-type and mutant enzymes. RESULTS: We found a bacteriophage-derived polysaccharide lyase that depolymerizes the K1 CPS into fragments of 1-3 repeating trisaccharide units with the retention of the pyruvylation and O-acetylation, and thus the important antigenic determinants of intact K1 CPS. We also determined the 1.46-Å-resolution, product-bound crystal structure of the enzyme, revealing two distinct carbohydrate-binding sites in a trimeric ß-helix architecture, which provide the first direct evidence for a second, non-catalytic, carbohydrate-binding site in bacteriophage-derived polysaccharide depolymerases. We demonstrate the tight interaction between the pyruvate moiety of K1 CPS and the enzyme in this second carbohydrate-binding site to be crucial to CPS depolymerization of the enzyme as well as phage absorption and infectivity. We also demonstrate that the enzyme is capable of protecting mice from K1 K. pneumoniae infection, even against a high challenge dose. CONCLUSIONS: Our results provide insights into how the enzyme recognizes and depolymerizes the K1 CPS, and demonstrate the potential use of the protein not only as a therapeutic agent against K. pneumoniae, but also as a tool to prepare structurally-defined oligosaccharides for the generation of glycoconjugate vaccines against infections caused by this organism.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Liases , Animais , Cápsulas Bacterianas/genética , Bacteriófagos/genética , Humanos , Cinética , Klebsiella pneumoniae , Camundongos
2.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023073

RESUMO

Protein phosphorylation can induce signal transduction to change sperm motility patterns during sperm capacitation. However, changes in the phosphorylation of sperm proteins in mice are still incompletely understood. Here, capacitation-related phosphorylation in mouse sperms were firstly investigated by label-free quantitative (LFQ) phosphoproteomics coupled with bioinformatics analysis using ingenuity pathway analysis (IPA) methods such as canonical pathway, upstream regulator, and network analysis. Among 1632 phosphopeptides identified at serine, threonine, and tyrosine residues, 1050 novel phosphosites, corresponding to 402 proteins, were reported. Gene heatmaps for IPA canonical pathways showed a novel role for GSK-3 in GP6 signaling pathways associated with capacitation for 60 min. At the same time, the reduction of the abundant isoform-specific GSK-3α expression was shown by western blot (WB) while the LFQ pY of this isoform slightly decreased and then increased. The combined results from WB and LFQ methods explain the less inhibitory phosphorylation of GSK-3α during capacitation and also support the predicted increases in its activity. In addition, pAKAP4 increased at the Y156 site but decreased at the Y811 site in a capacitated state, even though IPA network analysis and WB analysis for overall pAKAP revealed upregulated trends. The potential roles of GSK-3 and AKAP4 in fertility are discussed.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Quinase 3 da Glicogênio Sintase/genética , Proteômica , Capacitação Espermática/genética , Animais , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Fosfoproteínas/genética , Fosforilação/genética , Transdução de Sinais/genética , Espermatozoides/crescimento & desenvolvimento
3.
Chembiochem ; 20(2): 140-146, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30378729

RESUMO

Human tumor necrosis factor receptor associated factor (TRAF)-interacting protein, with a forkhead-associated domain (TIFA), is a key regulator of NF-κB activation. It also plays a key role in the activation of innate immunity in response to bacterial infection, through heptose 1,7-bisphosphate (HBP); a metabolite of lipopolysaccharide (LPS). However, the mechanism of TIFA function is largely unexplored, except for the suggestion of interaction with TRAF6. Herein, we provide evidence for direct binding, albeit weak, between TIFA and the TRAF domain of TRAF6, and it is shown that the binding is enhanced for a rationally designed double mutant, TIFA S174Q/M179D. Enhanced binding was also demonstrated for endogenous full-length TRAF6. Furthermore, the structures of the TRAF domain complexes with the consensus TRAF-binding peptides from the C terminus of wild-type and S174Q/M179D mutant TIFA, showing salt-bridge formation between residues 177-181 of TIFA and the binding pocket residues of the TRAF domain, were solved. Taken together, the results provide direct evidence and a structural basis for the TIFA-TRAF6 interaction, and show how this important biological function can be modulated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Fator 6 Associado a Receptor de TNF/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Conformação Proteica , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo
4.
Mol Cell Proteomics ; 15(1): 12-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26499836

RESUMO

Nosocomial infectious outbreaks caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. Phosphoproteomics of pathogenic bacteria has been used to identify the mechanisms of bacterial virulence and antimicrobial resistance. In this study, we used a shotgun strategy combined with high-accuracy mass spectrometry to analyze the phosphoproteomics of the imipenem-susceptible strain SK17-S and -resistant strain SK17-R. We identified 410 phosphosites on 248 unique phosphoproteins in SK17-S and 285 phosphosites on 211 unique phosphoproteins in SK17-R. The distributions of the Ser/Thr/Tyr/Asp/His phosphosites in SK17-S and SK17-R were 47.0%/27.6%/12.4%/8.0%/4.9% versus 41.4%/29.5%/17.5%/6.7%/4.9%, respectively. The Ser-90 phosphosite, located on the catalytic motif S(88)VS(90)K of the AmpC ß-lactamase, was first identified in SK17-S. Based on site-directed mutagenesis, the nonphosphorylatable mutant S90A was found to be more resistant to imipenem, whereas the phosphorylation-simulated mutant S90D was sensitive to imipenem. Additionally, the S90A mutant protein exhibited higher ß-lactamase activity and conferred greater bacterial protection against imipenem in SK17-S compared with the wild-type. In sum, our results revealed that in A. baumannii, Ser-90 phosphorylation of AmpC negatively regulates both ß-lactamase activity and the ability to counteract the antibiotic effects of imipenem. These findings highlight the impact of phosphorylation-mediated regulation in antibiotic-resistant bacteria on future drug design and new therapies.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Imipenem/farmacologia , Proteoma/metabolismo , Proteômica/métodos , beta-Lactamases/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Infecção Hospitalar/microbiologia , Humanos , Modelos Moleculares , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Espectrometria de Massas em Tandem , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamases/química , beta-Lactamases/genética
5.
Biochemistry ; 56(38): 5112-5124, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28858528

RESUMO

The vast majority of in vitro structural and functional studies of the activation mechanism of protein kinases use the kinase domain alone. Well-demonstrated effects of regulatory domains or allosteric factors are scarce for serine/threonine kinases. Here we use a site-specifically phosphorylated SCD1-FHA1-kinase three-domain construct of the serine/threonine kinase Rad53 to show the effect of phospho-priming, an in vivo regulatory mechanism, on the autophosphorylation intermediate and specificity. Unphosphorylated Rad53 is a flexible monomer in solution but is captured in an asymmetric enzyme:substrate complex in crystal with the two FHA domains separated from each other. Phospho-priming induces formation of a stable dimer via intermolecular pT-FHA binding in solution. Importantly, autophosphorylation of unprimed and phospho-primed Rad53 produced predominantly inactive pS350-Rad53 and active pT354-Rad53, respectively. The latter mechanism was also demonstrated in vivo. Our results show that, while Rad53 can display active conformations under various conditions, simulation of in vivo regulatory conditions confers functionally relevant autophosphorylation.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/química , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Dano ao DNA , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Fosfotreonina/metabolismo , Domínios Proteicos , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Espalhamento a Baixo Ângulo , Serina/química , Treonina/química , Treonina/metabolismo
6.
J Am Chem Soc ; 138(14): 4787-95, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27010847

RESUMO

In this study, we report the structure and function of a lectin from the sea mollusk Crenomytilus grayanus collected from the sublittoral zone of Peter the Great Bay of the Sea of Japan. The crystal structure of C. grayanus lectin (CGL) was solved to a resolution of 1.08 Å, revealing a ß-trefoil fold that dimerizes into a dumbbell-shaped quaternary structure. Analysis of the crystal CGL structures bound to galactose, galactosamine, and globotriose Gb3 indicated that each CGL can bind three ligands through a carbohydrate-binding motif involving an extensive histidine- and water-mediated hydrogen bond network. CGL binding to Gb3 is further enhanced by additional side-chain-mediated hydrogen bonds in each of the three ligand-binding sites. NMR titrations revealed that the three binding sites have distinct microscopic affinities toward galactose and galactosamine. Cell viability assays showed that CGL recognizes Gb3 on the surface of breast cancer cells, leading to cell death. Our findings suggest the use of this lectin in cancer diagnosis and treatment.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Bivalves/química , Lectinas/química , Lectinas/farmacologia , Trissacarídeos/química , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sequência de Carboidratos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Lectinas/metabolismo , Células MCF-7 , Modelos Moleculares , Estrutura Secundária de Proteína , Trissacarídeos/metabolismo
7.
Mol Cell Proteomics ; 12(10): 2701-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23828892

RESUMO

Thermus thermophilus HB27 is an extremely thermophilic eubacteria with a high frequency of natural competence. This organism is therefore often used as a thermophilic model to investigate the molecular basis of type IV pili-mediated functions, such as the uptake of free DNA, adhesion, twitching motility, and biofilm formation, in hot environments. In this study, the phosphoproteome of T. thermophilus HB27 was analyzed via a shotgun approach and high-accuracy mass spectrometry. Ninety-three unique phosphopeptides, including 67 in vivo phosphorylated sites on 53 phosphoproteins, were identified. The distribution of Ser/Thr/Tyr phosphorylation sites was 57%/36%/7%. The phosphoproteins were mostly involved in central metabolic pathways and protein/cell envelope biosynthesis. According to this analysis, the ATPase motor PilF, a type IV pili-related component, was first found to be phosphorylated on Thr-368 and Ser-372. Through the point mutation of PilF, mimic phosphorylated mutants T368D and S372E resulted in nonpiliated and nontwitching phenotypes, whereas nonphosphorylated mutants T368V and S372A displayed piliation and twitching motility. In addition, mimic phosphorylated mutants showed elevated biofilm-forming abilities with a higher initial attachment rate, caused by increasing exopolysaccharide production. In summary, the phosphorylation of PilF might regulate the pili and biofilm formation associated with exopolysaccharide production.


Assuntos
Biofilmes/crescimento & desenvolvimento , Proteínas de Fímbrias/fisiologia , Fímbrias Bacterianas/fisiologia , Fosfoproteínas/fisiologia , Thermus thermophilus/fisiologia , Biopolímeros/metabolismo , Escherichia coli/genética , Fosfopeptídeos/fisiologia , Fosforilação , Polissacarídeos/metabolismo , Proteômica
8.
Helicobacter ; 19(5): 356-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24834789

RESUMO

BACKGROUND: The lon gene of Helicobacter pylori strains is constitutively expressed during growth. However, virtually nothing is understood concerning the role of Lon in H. pylori. This study examined the function and physiological role of Lon in H. pylori (HpLon) using a trapping approach to identify putative Lon binding partners in the bacterium. MATERIALS AND METHODS: Protease-deficient Lon was expressed and served as the bait in trapping approach to capture the interacting partners in H. pylori. The antibiotic susceptibility of wild-type and lon derivative mutants was determined by the E test trips and the disc diffusion assay. The effect of HpLon on RdxA activity was detected the change in NADPH oxidation and metronidazole reduction by spectrophotometer. RESULTS: Lon in Helicobacter pylori (HpLon) interacting partners are mostly associated with metronidazole activation. lon mutant presents more susceptible to metronidazole than that of the wild type, and this phenotype is recovered by complementation of the wild-type Lon. We found that the ATPases associated with a variety of cellular activities (AAA(+) ) module of HpLon causes a decrease in both NADPH oxidase and Mtz reductase activity in RdxA, a major Mtz-activating enzyme in H. pylori. CONCLUSION: Metronidazole resistance of H. pylori causes the serious medical problem worldwide. In this study, HpLon is involved in metronidazole susceptibility among H. pylori strains. We provide the evidence that HpLon alters RdxA activity in vitro. The decrease in metronidazole activation caused by HpLon is possibly prior to accumulate mutation in rdxA gene before the metronidazole-resistant strains to be occurred.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Helicobacter pylori/enzimologia , Metronidazol/farmacologia , Nitrorredutases/metabolismo , Protease La/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Nitrorredutases/genética , Protease La/genética , Alinhamento de Sequência
9.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1789-97, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999302

RESUMO

The Lon protease is ubiquitous in nature. Its proteolytic activity is associated with diverse cellular functions ranging from maintaining proteostasis under normal and stress conditions to regulating cell metabolism. Although Lon was originally identified as an ATP-dependent protease with fused AAA+ (ATPases associated with diverse cellular activities) and protease domains, analyses have recently identified LonC as a class of Lon-like proteases with no intrinsic ATPase activity. In contrast to the canonical ATP-dependent Lon present in eukaryotic organelles and prokaryotes, LonC contains an AAA-like domain that lacks the conserved ATPase motifs. Moreover, the LonC AAA-like domain is inserted with a large domain predicted to be largely α-helical; intriguingly, this unique Lon-insertion domain (LID) was disordered in the recently determined full-length crystal structure of Meiothermus taiwanensis LonC (MtaLonC). Here, the crystal structure of the N-terminal AAA-like α/ß subdomain of MtaLonC containing an intact LID, which forms a large α-helical hairpin protruding from the AAA-like domain, is reported. The structure of the LID is remarkably similar to the tentacle-like prong of the periplasmic chaperone Skp. It is shown that the LID of LonC is involved both in Skp-like chaperone activity and in recognition of unfolded protein substrates. The structure allows the construction of a complete model of LonC with six helical hairpin extensions defining a basket-like structure atop the AAA ring and encircling the entry portal to the barrel-like degradation chamber of Lon.


Assuntos
Citosol/enzimologia , Chaperonas Moleculares/química , Protease La/química , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Deinococcus , Proteínas de Escherichia coli/química , Protease La/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
10.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1395-402, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23897463

RESUMO

The Lon proteases are a unique family of chambered proteases with a built-in AAA+ (ATPases associated with diverse cellular activities) module. Here, crystal structures of a unique member of the Lon family with no intrinsic ATPase activity in the proteolytically active form are reported both alone and in complexes with three covalent inhibitors: two peptidomimetics and one derived from a natural product. This work reveals the unique architectural features of an ATP-independent Lon that selectively degrades unfolded protein substrates. Importantly, these results provide mechanistic insights into the recognition of inhibitors and polypeptide substrates within the conserved proteolytic chamber, which may aid the development of specific Lon-protease inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Inibidores de Proteases/química , Protease La/antagonistas & inibidores , Protease La/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Bortezomib , Domínio Catalítico , Cristalografia por Raios X , Deinococcus/enzimologia , Lactonas/química , Lactonas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Inibidores de Proteases/metabolismo , Protease La/metabolismo , Conformação Proteica , Pirazinas/química , Pirazinas/metabolismo
11.
Science ; 382(6674): eadd7795, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033054

RESUMO

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.


Assuntos
Proteínas Arqueais , Reparo do DNA , Desoxirribodipirimidina Fotoliase , Methanosarcina , Dímeros de Pirimidina , Proteínas Arqueais/química , Catálise , Cristalografia/métodos , Desoxirribodipirimidina Fotoliase/química , DNA/química , DNA/efeitos da radiação , Methanosarcina/enzimologia , Conformação Proteica , Dímeros de Pirimidina/química , Raios Ultravioleta
12.
Nat Chem ; 14(6): 677-685, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35393554

RESUMO

Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD•- isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD•-. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis.


Assuntos
Desoxirribodipirimidina Fotoliase , Prótons , Arginina/metabolismo , Cristalografia , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Transporte de Elétrons , Elétrons , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas , Oxirredução
13.
Mol Vis ; 17: 1862-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21850160

RESUMO

PURPOSE: In this study, we investigated the biochemical pharmacology of pirenoxine (PRX) and catalin under in vitro selenite/calcium- and ultraviolet (UV)-induced lens protein turbidity challenges. The systemic effects of catalin were determined using a selenite-induced cataractogenesis rat model. METHODS: In vitro cataractogenesis assay systems (including UVB/C photo-oxidation of lens crystallins, calpain-induced proteolysis, and selenite/calcium-induced turbidity of lens crystallin solutions) were used to screen the activity of PRX and catalin eye drop solutions. Turbidity was identified as the optical density measured using spectroscopy at 405 nm. We also determined the in vivo effects of catalin on cataract severity in a selenite-induced cataract rat model. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied to analyze the integrity of crystallin samples. RESULTS: PRX at 1,000 µM significantly delayed UVC-induced turbidity formation compared to controls after 4 h of UVC exposure (p<0.05), but not in groups incubated with PRX concentrations of <1,000 µM. Results were further confirmed by SDS-PAGE. The absolute γ-crystallin turbidity induced by 4 h of UVC exposure was ameliorated in the presence of catalin equivalent to 1~100 µM PRX in a concentration-dependent manner. Samples with catalin-formulated vehicle only (CataV) and those containing PRX equivalent to 100 µM had a similar protective effect after 4 h of UVC exposure compared to the controls (p<0.05). PRX at 0.03, 0.1, and 0.3 µM significantly delayed 10 mM selenite- and calcium-induced turbidity formation compared to controls on days 0~4 (p<0.05). Catalin (equivalent to 32, 80, and 100 µM PRX) had an initial protective effect against selenite-induced lens protein turbidity on day 1 (p<0.05). Subcutaneous pretreatment with catalin (5 mg/kg) also statistically decreased the mean cataract scores in selenite-induced cataract rats on post-induction day 3 compared to the controls (1.3±0.2 versus 2.4±0.4; p<0.05). However, catalin (equivalent to up to 100 µM PRX) did not inhibit calpain-induced proteolysis activated by calcium, and neither did 100 µM PRX. CONCLUSIONS: PRX at micromolar levels ameliorated selenite- and calcium-induced lens protein turbidity but required millimolar levels to protect against UVC irradiation. The observed inhibition of UVC-induced turbidity of lens crystallins by catalin at micromolar concentrations may have been a result of the catalin-formulated vehicle. Transient protection by catalin against selenite-induced turbidity of crystallin solutions in vitro was supported by the ameliorated cataract scores in the early stage of cataractogenesis in vivo by subcutaneously administered catalin. PRX could not inhibit calpain-induced proteolysis activated by calcium or catalin itself, and may be detrimental to crystallins under UVB exposure. Further studies on formulation modifications of catalin and recommended doses of PRX to optimize clinical efficacy by cataract type are warranted.


Assuntos
Catarata/tratamento farmacológico , Cristalino/efeitos dos fármacos , Soluções Oftálmicas/uso terapêutico , Oxazinas/uso terapêutico , gama-Cristalinas/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Cálcio/farmacologia , Calpaína/efeitos adversos , Calpaína/farmacologia , Catarata/induzido quimicamente , Catarata/metabolismo , Catarata/prevenção & controle , Relação Dose-Resposta a Droga , Cálculos da Dosagem de Medicamento , Eletroforese em Gel de Poliacrilamida , Cristalino/metabolismo , Cristalino/patologia , Soluções Oftálmicas/administração & dosagem , Oxazinas/administração & dosagem , Proteólise/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Selenito de Sódio/administração & dosagem , Selenito de Sódio/efeitos adversos , Análise Espectral , Suínos , Raios Ultravioleta , gama-Cristalinas/química
14.
Inorg Chem ; 50(1): 365-77, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21138325

RESUMO

This study investigated whether and how pirenoxine (PRX) interacts with selenite or calcium ions, as these two ions have been proven respectively a factor leading to the formation of lens cataract. UV, NMR, and isothermal titration calorimetry (ITC) analysis indicated that PRX could bind maximum up to six selenite anions and the binding site preference was concentration dependent with the peripheral binding first followed by the π-π interactions with the aromatic moiety; while for calcium cation interaction the 3-carboxylate and ß-ketoimine functional groups were responsible for chelating calcium ions. The results obtained by MP2/6-31+G(d) molecular orbital calculations provided theoretical evidence in support of the π-π interactions between selenite and the PRX aromatic framework, and further analysis of the binding energies with the aromatic moiety indicates that these interactions take place most likely at the benzoquinone (ring I) π-system. The calcium binding preferences with PRX were also determined based on the stabilization energy obtained by B3LYP/6-31+G(d) calculations, showing the binding preferences were site 2 > site 1 > site 3 > ring II, consistent with the experimental data. The in vitro study of the reduction of selenite or calcium ions-induced lens turbidity by PRX with ditopic recognition properties was thus demonstrated. These results may provide a rationale for using PRX as an anti-cataract agent and warrant further biological studies.


Assuntos
Cálcio , Complexos de Coordenação/metabolismo , Oxazinas/metabolismo , Selenito de Sódio , Cálcio/efeitos adversos , Cálcio/metabolismo , Catarata/induzido quimicamente , Catarata/tratamento farmacológico , Catarata/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Humanos , Cristalino/efeitos dos fármacos , Cristalino/metabolismo , Cristalino/patologia , Espectroscopia de Ressonância Magnética , Conformação Molecular , Nefelometria e Turbidimetria , Oxazinas/química , Oxazinas/uso terapêutico , Selenito de Sódio/efeitos adversos , Selenito de Sódio/metabolismo , Termodinâmica
15.
Int J Mol Sci ; 12(10): 7059-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22072936

RESUMO

Coumarin derivative 1, 5,7-dihydroxy-6-(3-methyl-1-butyryl)-4-phenyl-chromen- 2-one, has been reported to possess radical scavenging activity and DNA protection. We have synthesized a series of coumarins with structural modifications at positions C4, C5, C6 and C7 and evaluated them for their anti-UVC properties. Coumarin 7, 6-benzoyl-5,6-dihydroxy-4-phenyl-chromen-2-one, was found to have the most potent activity in protecting porcine γ-crystallin against UVC insults. Results of fluorescence assays indicated that compound 7 was capable of decreasing the loss of intensity while lens crystallins and DNA PUC19 were irradiated with UVC. Presence of compound 7 decreased hydroxyl radical levels determined by probe 1b and the free iron concentrations determined by Ferrozine reagent. The chelation assay showed that compound 7 was chelated to metal via 6-CO and 5-OH on the benzopyrone ring. The observed protective effects of compound 7 towards crystallins from insults of UVC and free radicals may be due to its iron-chelating activity and its peak absorption at 254 nm.


Assuntos
Catarata/prevenção & controle , Quelantes/química , Cumarínicos/química , Metais/química , Substâncias Protetoras/química , Animais , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , DNA/química , DNA/metabolismo , Radical Hidroxila/química , Radical Hidroxila/toxicidade , Cristalino/efeitos dos fármacos , Cristalino/efeitos da radiação , Nefelometria e Turbidimetria , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fotólise/efeitos dos fármacos , Fotólise/efeitos da radiação , Plasmídeos/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Suínos , Raios Ultravioleta
16.
Chem Commun (Camb) ; 57(50): 6209-6212, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34059855

RESUMO

Toll-like receptor 4 (TLR4) recognizes various protein ligands; however, the protein-TLR4 binding model is unclear. Here we demonstrate a Crenomytilus grayanus lectin (CGL)-TLR4/MD2 model to show that CGL interacts with a TLR4/myeloid differentiation factor 2 (MD2) complex independently of sugar-binding properties. CGL could suppress lipopolysaccharide-induced immune responses significantly, suggesting that TLR4 itself has potential as a therapeutic target.


Assuntos
Carboidratos/química , Lectinas/química , Antígeno 96 de Linfócito/química , Receptor 4 Toll-Like/química , Animais , Sítios de Ligação , Bivalves , Carboidratos/imunologia , Humanos , Lectinas/imunologia , Antígeno 96 de Linfócito/imunologia , Receptor 4 Toll-Like/imunologia
17.
Biophys J ; 98(1): 129-37, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20085725

RESUMO

The Escherichia coli Lon protease degrades the E. coli DNA-binding protein HUbeta, but not the related protein HUalpha. Here we show that the Lon protease binds to both HUbeta and HUalpha, but selectively degrades only HUbeta in the presence of ATP. Mass spectrometry of HUbeta peptide fragments revealed that region K18-G22 is the preferred cleavage site, followed in preference by L36-K37. The preferred cleavage site was further refined to A20-A21 by constructing and testing mutant proteins; Lon degraded HUbeta-A20Q and HUbeta-A20D more slowly than HUbeta. We used optical tweezers to measure the rupture force between HU proteins and Lon; HUalpha, HUbeta, and HUbeta-A20D can bind to Lon, and in the presence of ATP, the rupture force between each of these proteins and Lon became weaker. Our results support a mechanism of Lon protease cleavage of HU proteins in at least three stages: binding of Lon with the HU protein (HUbeta, HUalpha, or HUbeta-A20D); hydrolysis of ATP by Lon to provide energy to loosen the binding to the HU protein and to allow an induced-fit conformational change; and specific cleavage of only HUbeta.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Modelos Químicos , Protease La/química , Protease La/metabolismo , Sítios de Ligação , Ligação Proteica
18.
Biochem Biophys Res Commun ; 382(4): 762-5, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19324005

RESUMO

Previous studies on the N-terminal domain of Lon proteases have not clearly identified its function. Here we constructed randomly chosen N-terminal-truncated mutants of the Lon protease from Brevibacillus thermoruber WR-249 to elucidate the structure-function relationship of this domain. Mutants lacking amino acids from 1 to 247 of N terminus retained significant peptidase and ATPase activities, but lost approximately 90% of protease activity. Further truncation of the protein resulted in the loss of all three activities. Mutants lacking amino acids 246-259 or 248-256 also lost all activities and quaternary structure. Our results indicated that amino acids 248-256 (SEVDELRAQ) are important for the full function of the Lon protease.


Assuntos
Bacillus/enzimologia , Protease La/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos/genética , Dados de Sequência Molecular , Peso Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Protease La/genética , Protease La/metabolismo , Estrutura Terciária de Proteína/genética , Relação Estrutura-Atividade
19.
Biochem Biophys Res Commun ; 388(1): 62-6, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19643080

RESUMO

Lon protease has been well studied in many aspects; however, the DNA-binding specificity of Lon in prokaryotes has not been clearly identified. Here we examined the DNA-binding activity of Lon protease alpha-domains from Brevibacillus thermoruber (Bt), Bacillus subtilis (Bs), and Escherichia coli (Ec). MALDI-TOF mass spectroscopy showed that the alpha-domain from Bt-Lon binds to the duplex nucleotide sequence 5'-CTGTTAGCGGGC-3' (ms1) and protected it from DNase I digestion. Surface plasmon resonance showed that the Bt-Lon alpha-domain binds with ms1 double-stranded DNA tighter than Bs- and Ec-Lon alpha-domains, whereas the Bt-Lon alpha-domain has dramatically lower affinity for double-stranded DNA with 0 and 50% identity to the ms1 binding sequence. Our results indicated that Bt-Lon alpha-domain plays a critical role with ms1 sequence in the DNA-binding specificity.


Assuntos
Bactérias/enzimologia , Proteínas de Ligação a DNA/metabolismo , Protease La/metabolismo , Sequência de Aminoácidos , Bacillus/enzimologia , Sequência de Bases , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/enzimologia , Dados de Sequência Molecular , Protease La/química , Protease La/genética , Estrutura Terciária de Proteína/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Mol Vis ; 15: 1429-44, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19641632

RESUMO

PURPOSE: The COOH-terminal extension segment of alphaB-crystallin, a member of small heat shock protein (sHSP) family, appears to be a flexible polypeptide segment susceptible to proteolytic truncation and modifications under physiological conditions. To investigate its role on the structure and chaperone-like activity, we constructed various mutants of porcine alphaB-crystallin with either COOH-terminal serial truncations or site-specific mutagenesis on the last two residues. METHODS: The structures of these mutants were analyzed by circular dichroism (CD) spectroscopy, fluorescence spectra, mass spectrometry, Gel-permeation FPLC, and dynamic light-scattering spectrophotometry. Chaperone activity assays were performed under thermal and non-thermal stresses. The stability of proteins was examined by turbidity assays and CD spectra. RESULTS: All mutants showed similar secondary and tertiary structural features to the wild-type alphaB-crystallin as revealed by circular dichroism. However, truncations of the COOH-terminal segment generated crystallin aggregates with a molecular size slightly smaller than that of the wild-type alphaB-crystallin. The deletion of 12 residues from the COOH-terminal end greatly reduced the solubility, thermostability, and chaperone activity of alphaB-crystallin. On the contrary, the truncation of only 10 residues or less resulted in increased thermostability and enhanced anti-aggregation chaperone activity of alphaB-crystallin, with a maximal effect occurring on elimination of the last two residues. Moreover, displacing the last two lysines with glutamates or other neutral amino acids tended to show even higher chaperone activity than the deletion mutants. CONCLUSIONS: Our study clearly demonstrated that both the length and electrostatic charge of the COOH-terminal segment play crucial roles in governing the structural stability and chaperone activity of alphaB-crystallin.


Assuntos
Mutagênese Sítio-Dirigida , Mutação/genética , Sus scrofa/metabolismo , Temperatura , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo , Sequência de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Focalização Isoelétrica , Dados de Sequência Molecular , Peso Molecular , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Desnaturação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Cadeia B de alfa-Cristalina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa