Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(49): e2314392120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011546

RESUMO

Since the outbreak of Severe Acute Respiratory Syndrome Virus-2 (SARS-CoV-2) in 2019, more than 15 million spike protein sequences have been identified, raising a new challenge for the development of a broadly protective vaccine against the various emerging variants. We found that the virus, like most other human viruses, depends on host-made glycans to shield the conserved epitopes on spike protein from immune response and demonstrated that deletion of the glycan shields exposed highly conserved epitopes and elicited broadly protective immune responses. In this study, we identified 17 conserved epitopes from 14 million spike protein sequences and 11 of the conserved epitopes are in the S2 domain, including the six most conserved epitopes in the stem region. We also demonstrated that deletion of the glycosites in the spike messenger RNA (mRNA) S2 domain or the stem region exposed the highly conserved epitopes and elicited broadly protective immune responses, particularly CD-8+ T cell response against various SARS-CoV-2 variants, and other human coronaviruses including MERS, SARS viruses, and those causing common cold.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Açúcares , RNA Mensageiro/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas , Epitopos , Anticorpos Antivirais , Vacinas de mRNA
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149556

RESUMO

Development of the messenger RNA (mRNA) vaccine has emerged as an effective and speedy strategy to control the spread of new pathogens. After vaccination, the mRNA is translated into the real protein vaccine, and there is no need to manufacture the protein in vitro. However, the fate of mRNA and its posttranslational modification inside the cell may affect immune response. Here, we showed that the mRNA vaccine of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with deletion of glycosites in the receptor-binding domain (RBD) or especially the subunit 2 (S2) domain to expose more conserved epitopes elicited stronger antibody and CD8+ T cell responses with broader protection against the alpha, beta, gamma, delta, and omicron variants, compared to the unmodified mRNA. Immunization of such mRNA resulted in accumulation of misfolded spike protein in the endoplasmic reticulum, causing the up-regulation of BiP/GRP78, XBP1, and p-eIF2α to induce cell apoptosis and strong CD8+ T cell response. In addition, dendritic cells (DCs) incubated with S2-glysosite deleted mRNA vaccine increased class I major histocompatibility complex (MHC I) expression. This study provides a direction for the development of broad-spectrum mRNA vaccines which may not be achieved with the use of expressed proteins as antigens.


Assuntos
Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Glicosilação , Células HEK293 , Antígenos de Histocompatibilidade/metabolismo , Humanos , Imunidade , Camundongos Endogâmicos BALB C , Resposta a Proteínas não Dobradas , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia
3.
Glycobiology ; 33(5): 423-431, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988396

RESUMO

A novel Gal-binding lectin from mussels (Crenomytilus grayanus, CGL) with 6 binding sites in the dimeric structure has been previously shown to have antifungal, anticancer, and antibacterial activities. In this study, a glycan array was used to confirm that CGL recognizes a range of non-reducing end α- or ß-linked Gal glycans on normal cells but not sialic acid-capped glycans. This finding suggests that CGL has potential in the tumor detection due to the hyper-sialylation present in cell surface glycans from cancer cells. To evaluate the feasibility of this possibility, we labeled CGL with biotin and then mixed it with streptavidin-horseradish peroxidase (HRP) to create a CGL-biotin-SP complex as a probe for use in enzyme-linked lectin assays. CGL-biotin-SP successfully distinguished not only HeLa cells and de-sialylated HeLa cells that mimic normal cell surface glycans but also lung and breast cancer cells with different metastatic abilities. This work provides the insights into a new Gal-binding lectin by establishing its specificity and also demonstrates practical applications in cancer diagnosis greater than other reported lectins.


Assuntos
Lectinas , Mytilidae , Animais , Humanos , Lectinas/química , Células HeLa , Biotina , Mytilidae/metabolismo , Polissacarídeos/metabolismo
4.
J Am Chem Soc ; 145(17): 9840-9849, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37089019

RESUMO

Polysaccharides have been successfully used as immunogens for the development of vaccines against bacterial infection; however, there are no oligosaccharide-based vaccines available to date and no previous studies of their processing and presentation. We reported here the intracellular enzymatic processing and antigen presentation of an oligosaccharide-conjugate cancer vaccine prepared from the glycan of Globo-H (GH), a globo-series glycosphingolipid (GSL). This oligosaccharide-conjugate vaccine was shown to elicit antibodies against the glycan moieties of all three globo-series GSLs that are exclusively expressed on many types of cancer and their stem cells. To understand the specificity and origin of cross-reactivity of the antibodies elicited by the vaccine, we found that the vaccine is first processed by fucosidase 1 in the early endosome of dendritic cells to generate a common glycan antigen of the GSLs along with GH for MHC class II presentation. This work represents the first study of oligosaccharide processing and presentation and is expected to facilitate the design and development of glycoconjugate vaccines based on oligosaccharide antigens.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Conjugadas , Apresentação de Antígeno , Anticorpos , Polissacarídeos , Oligossacarídeos
5.
J Org Chem ; 88(11): 7141-7151, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37167441

RESUMO

Regioselective functionalization of unprotected carbohydrates at a secondary OH group in the presence of primary OH groups based on the commonly used organotin-mediated reaction has been improved. We found that the preactivation of the dibutylstannylene acetal intermediate with tetrabutylammonium bromide in toluene is a key to the improved condition for the efficient, high-yielding, and regioselective tosylation, benzoylation, or benzylation of unprotected carbohydrates. The counteranion of tetrabutylammonium ion with a weak coordination ability plays a crucial role in the improved regioselective reactions. A convenient access to the intermediates of synthetic value is also demonstrated in the organotin-mediated regioselective tosylation of unprotected carbohydrates, followed by the nucleophilic inversion reaction to give sulfur-containing and azide-modified carbohydrates.

6.
Proc Natl Acad Sci U S A ; 116(9): 3518-3523, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808745

RESUMO

The globo-series glycosphingolipids (GSLs) SSEA3, SSEA4, and Globo-H specifically expressed on cancer cells are found to correlate with tumor progression and metastasis, but the functional roles of these GSLs and the key enzyme ß1,3-galactosyltransferase V (ß3GalT5) that converts Gb4 to SSEA3 remain largely unclear. Here we show that the expression of ß3GalT5 significantly correlates with tumor progression and poor survival in patients, and the globo-series GSLs in breast cancer cells form a complex in membrane lipid raft with caveolin-1 (CAV1) and focal adhesion kinase (FAK) which then interact with AKT and receptor-interacting protein kinase (RIP), respectively. Knockdown of ß3GalT5 disrupts the complex and induces apoptosis through dissociation of RIP from the complex to interact with the Fas death domain (FADD) and trigger the Fas-dependent pathway. This finding provides a link between SSEA3/SSEA4/Globo-H and the FAK/CAV1/AKT/RIP complex in tumor progression and apoptosis and suggests a direction for the treatment of breast cancer, as demonstrated by the combined use of antibodies against Globo-H and SSEA4.


Assuntos
Neoplasias da Mama/genética , Galactosiltransferases/genética , Glicoesfingolipídeos/genética , Microdomínios da Membrana/genética , Antígenos Glicosídicos Associados a Tumores/genética , Antígenos Glicosídicos Associados a Tumores/metabolismo , Apoptose/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caveolina 1/genética , Caveolina 1/metabolismo , Progressão da Doença , Proteína de Domínio de Morte Associada a Fas/genética , Feminino , Proteína-Tirosina Quinases de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica/genética , Glicoesfingolipídeos/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Microdomínios da Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/genética , Saporinas/genética , Transdução de Sinais/genética , Antígenos Embrionários Estágio-Específicos/genética , Antígenos Embrionários Estágio-Específicos/metabolismo
7.
J Org Chem ; 85(24): 15964-15997, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33108196

RESUMO

Klebsiella pneumoniae causes pneumonia and liver abscesses in humans worldwide and contains virulence factor capsular polysaccharides and lipopolysaccharides linked to the cell wall. Although capsular polysaccharides are good antigens for vaccine production and capsular oligosaccharides conjugate vaccines are proven effective against infections caused by encapsulated pathogens, there is still no Klebsiella pneumoniae vaccine available. One obstacle is that the capsular polysaccharide of a dominated Klebsiella pneumoniae serotype K2 is difficult to synthesize chemically due to the three 1,2-cis linkages in its structure. In this study, we successfully synthesized K2 capsular polysaccharides from tetra- to octasaccharides in highly a stereoselective manner. Subsequently, three synthesized glycans were conjugated to DT protein to provide glycoconjugate vaccine candidates (DT-Hexa, DT-Hepta, and DT-Octa) that were used in in vivo immunization experiments in mice. The results of immunized studies showed all three glycoconjugates elicited antibodies that recognized all of the synthetic glycans at 1:200-fold dilution. Particularly, the DT-Hepta conjugate elicited a higher level of antibodies that can recognize longer glycan (octasaccharide) even at 1:12800-fold dilution and exhibited good bactericidal activity. Our results concluded that heptasaccharide is the minimal epitope and a potential candidate for the vaccine against the K2 sero group of Klebsiella pneumoniae.


Assuntos
Glicoconjugados , Klebsiella pneumoniae , Animais , Camundongos , Polissacarídeos , Polissacarídeos Bacterianos , Sorogrupo , Vacinas Conjugadas
9.
J Am Chem Soc ; 140(28): 8639-8643, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29965749

RESUMO

Pseudaminic acid (Pse) has been known for participating in crucial bacterial virulence and thus is an attractive target in the development of glycoconjugate vaccine. Particularly, this therapeutic alternative was suggested to be a potential solution against antibiotic resistant Acinetobacter baumannii that poses a serious global health threat. Also, Pse was found to be involved in the exopolysaccharide (EPS) of mild antibiotic resistant A. baumannii strain 54149 ( Ab-54149) of which specific glycosyl linkage can be depolymerized by phage ΦAB6 tailspike protein (ΦAB6TSP). In this study, we found that the antibodies induced by Ab-54149 EPS was capable of recognizing a range of EPS of other clinical A. baumannii strains, and deemed as a great potential material for vaccination. To efficiently acquire homogeneous EPS-derived oligosaccharide with significant immunogenic activity for the production of glycoconjugate, we used the ΦAB6TSP for the fragmentation of Ab-54149 EPS instead of chemical methods. Moreover, insight into the ligand binding characterization of ΦAB6TSP suggested the branched Pse on the Ab-54149 EPS served as a recognition site of ΦAB6TSP. The serum boosted by ΦAB6TSP-digested product and carrier protein CRM197 conjugate complex displayed specific sensitivity toward Ab-54149 EPS with bacterial killing activity. Strikingly, Pse is an ideal epitope with strong antigenicity, profiting the application of the probe for pathogen detection and glyco-based vaccine.


Assuntos
Acinetobacter baumannii/imunologia , Vacinas Bacterianas/imunologia , Glicoconjugados/imunologia , Polissacarídeos Bacterianos/imunologia , Açúcares Ácidos/imunologia , Vacinas Conjugadas/imunologia , Proteínas da Cauda Viral/imunologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/prevenção & controle , Glicosídeo Hidrolases , Humanos , Modelos Moleculares
10.
J Am Chem Soc ; 140(15): 5202-5210, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29578688

RESUMO

The development of an HIV vaccine has been hampered by the extraordinary mutability and genetic diversity of the virus, particularly the substantial sequence diversity of gp120 and gp 41 envelope glycoproteins existing in more than 2000 HIV variants. The highly diverse glycans on HIV spikes are commonly considered as immunologically silent self-antigens; however, the discovery of highly potent broadly neutralizing antibodies (bNAbs) from HIV patients targeting the viral surface glycans has raised a major question about the origin of their antigens. Recent epitope mapping studies of the bNAb PG9 indicated a requirement of a properly spaced high mannose and a complex type glycan connected by a short peptide spacer. We have recently discovered that a 1:1 mixture of Man5 and sialyl biantennary glycan with well-defined distance and without the peptide spacer is well recognized by PG9 with high avidity and, thus, proposed that a hybrid glycan with oligomannose and complex-type arm could be the proper ligand of PG9. To verify this proposition, we first designed and chemo-enzymatically synthesized a series of unusual hybrid-type N-glycan structures, which may exist on HIV surface glycoproteins through the host-guided N-glycosylation pathway. The synthetic hybrid glycans were then used to prepare glycan arrays for the binding studies of PG9 and several other highly potent bNAbs, including PG16, PGT121, PGT128-3C, 2G12, VRC13, VRC-PG05, VRC26.25, VRC26.09, PGDM1400, 35O22, and 10-1074. Our results demonstrated that PG9 and some other bNAbs bind with strong avidity (subnanomolar Kd) to certain hybrid structures, suggesting that these unusual glycans may serve as epitopes for the design of vaccines against HIV.


Assuntos
Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Polissacarídeos/imunologia , Anticorpos Neutralizantes/química , HIV-1/química , Humanos , Ligantes , Polissacarídeos/química
11.
ACS Infect Dis ; 10(6): 2161-2171, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38770797

RESUMO

Serotypes 6C and 6D of Streptococcus pneumoniae are two major variants that cause invasive pneumococcal disease (IPD) in serogroup 6 alongside serotypes 6A and 6B. Since the introduction of the pneumococcal conjugate vaccines PCV7 and PCV13, the number of cases of IPD caused by pneumococcus in children and the elderly population has greatly decreased. However, with the widespread use of vaccines, a replacement effect has recently been observed among different serotypes and lowered the effectiveness of the vaccines. To investigate protection against the original serotypes and to explore protection against variants and replacement serotypes, we created a library of oligosaccharide fragments derived from the repeating units of the capsular polysaccharides of serotypes 6A, 6B, 6C, and 6D through chemical synthesis. The library includes nine pseudosaccharides with or without exposed terminal phosphate groups and four pseudotetrasaccharides bridged by phosphate groups. Six carbohydrate antigens related to 6C and 6D were prepared as glycoprotein vaccines for immunogenicity studies. Two 6A and two 6B glycoconjugate vaccines from previous studies were included in immunogenicity studies. We found that the conjugates containing four phosphate-bridged pseudotetrasaccharides were able to induce good immune antibodies and cross-immunogenicity by showing superior activity and broad cross-protective activity in OPKA bactericidal experiments.


Assuntos
Anticorpos Antibacterianos , Oligossacarídeos , Infecções Pneumocócicas , Vacinas Pneumocócicas , Sorogrupo , Streptococcus pneumoniae , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/química , Oligossacarídeos/química , Oligossacarídeos/síntese química , Vacinas Pneumocócicas/imunologia , Vacinas Pneumocócicas/química , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/imunologia , Anticorpos Antibacterianos/imunologia , Animais , Camundongos , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/química , Humanos , Feminino
12.
ACS Chem Biol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912881

RESUMO

Eliminating the core fucose from the N-glycans of the Fc antibody segment by pathway engineering or enzymatic methods has been shown to enhance the potency of therapeutic antibodies, especially in the context of antibody-dependent cytotoxicity (ADCC). However, there is a significant challenge due to the limited defucosylation efficiency of commercially available α-l-fucosidases. In this study, we report a unique α-l-fucosidase (PnfucA) from the bacterium Prevotella nigrescens that has a low sequence identity compared with all other known α-l-fucosidases and is highly reactive toward a core disaccharide substrate with fucose α(1,3)-, α (1,4)-and α(1,6)-linked to GlcNAc, and is less reactive toward the Fuc-α(1,2)-Gal on the terminal trisaccharide of the oligosaccharide Globo H (Bb3). The kinetic properties of the enzyme, such as its Km and kcat, were determined and the optimized expression of PnfucA gave a yield exceeding 30 mg/L. The recombinant enzyme retained its full activity even after being incubated for 6 h at 37 °C. Moreover, it retained 92 and 87% of its activity after freezing and freeze-drying treatments, respectively, for over 28 days. In a representative glycoengineering of adalimumab (Humira), PnfucA showed remarkable hydrolytic efficiency in cleaving the α(1,6)-linked core fucose from FucGlcNAc on the antibody with a quantitative yield. This enabled the seamless incorporation of biantennary sialylglycans by Endo-S2 D184 M in a one-pot fashion to yield adalimumab in a homogeneous afucosylated glycoform with an improved binding affinity toward Fcγ receptor IIIa.

13.
Front Chem ; 10: 865026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783215

RESUMO

We presented a facile and scalable route for the synthesis of di-azido sugars via one-pot double inversion of the mono-benzoyl sugars by TBAN3 and studied the dependency pattern between solvent and protecting groups as well as the configuration of the neighboring and leaving groups. Moreover, we developed a chemical synthetic strategy for pseudaminic acid precursors (11 steps in 49%). Furthermore, we discussed the configuration of nonulosonic acid precursors for specificity of PseI and PmNanA enzymatic synthesis, permitting us to synthesize new nonulosonic acid derivatives for accessing Pse isomers.

14.
ACS Infect Dis ; 8(3): 626-634, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35171577

RESUMO

Streptococcus pneumoniae serotypes 6A and 6B are two of the common causes of invasive pneumococcal diseases. Although capsular polysaccharide conjugates of these two serotypes are included in the leading 13-valent pneumococcal conjugate vaccine, its low immunogenicity and high threshold for manufacturing technology indicated the need for vaccine improvement. Structurally defined synthetic immunogens have potential in dealing with these problems. To this end, we built a library of capsular polysaccharide fragments through convergent chemical synthesis in [2 + 2], [4 + 4], [4 + 3], [4 + 2], and [4 + 1] coupling manners. The library is comprised of 18 glycan antigens from trisaccharides to pseudo-octasaccharides, derived from the capsular repeating phosphorylated pseudo-tetrasaccharide with or without phosphate. Eight of them were selected for mouse immunization and further immunological studies. Four pseudo-tetrasaccharides with terminal or bridging phosphate elicited opsonic antibodies, which exhibited bactericidal activities and moderate cross-reactivities.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Anticorpos Antibacterianos , Camundongos , Oligossacarídeos , Infecções Pneumocócicas/prevenção & controle , Sorogrupo
15.
Front Immunol ; 13: 843183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386691

RESUMO

Klebsiella pneumoniae is an important pathogen associated with nosocomial infection and has developed increasing resistance to antibiotics such as extended-spectrum ß-lactams and carbapenem. In recent years, K. pneumoniae isolates have emerged as a major cause of global community-acquired infections such as pneumonia and pyogenic liver abscess. Although serotypes K1 and K2 have been identified as the predominant capsular types associated with invasive infections, no K. pneumoniae vaccine is commercially available, probably due to immunogenicity loss in the traditional depolymerization method to obtain capsule polysaccharide (CPS) for the preparation of conjugated vaccine. In this study, we successfully retained immunogenicity by using K1 (K1-ORF34) and K2 (K2-ORF16) CPS depolymerases that were identified from phages to cleave K1 and K2 CPSs into intact structural units of oligosaccharides with intact modifications. The obtained K1 and K2 oligosaccharides were separately conjugated with CRM197 carrier protein to generate CPS-conjugated vaccines. Immunization experiments of mice showed both K1 and K2 CPS-conjugated vaccines induced anti-CPS antibodies with 128-fold and 64-fold increases of bactericidal activities, respectively, compare to mice without vaccinations. Challenge tests indicated that K1 or K2 CPS-conjugated vaccine and divalent vaccine (a mixture of K1 and K2 CPS-conjugated vaccines) protected mice from subsequent infection of K. pneumoniae by the respective capsular type. Thus, we demonstrated K1 and K2 CPS-conjugated vaccines prepared by CPS depolymerases is a promising candidate for developing vaccines against human K. pneumoniae infections.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Vacinas , Animais , Cápsulas Bacterianas , Klebsiella pneumoniae , Camundongos , Polissacarídeos/metabolismo , Vacinas/metabolismo
16.
Adv Sci (Weinh) ; : e2205451, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36373710

RESUMO

Deciphering signaling mechanisms critical for the extended pluripotent stem cell (EPSC) state and primed pluripotency is necessary for understanding embryonic development. Here, a membrane protein, podocalyxin-like protein 1 (PODXL) as being essential for extended and primed pluripotency, is identified. Alteration of PODXL expression levels affects self-renewal, protein expression of c-MYC and telomerase, and induced pluripotent stem cell (iPSC) and EPSC colony formation. PODXL is the first membrane protein reported to regulate de novo cholesterol biosynthesis, and human pluripotent stem cells (hPSCs) are more sensitive to cholesterol depletion than fibroblasts. The addition of exogenous cholesterol fully restores PODXL knockdown-mediated loss of pluripotency. PODXL affects lipid raft dynamics via the regulation of cholesterol. PODXL recruits the RAC1/CDC42/actin network to regulate SREBP1 and SREBP2 maturation and lipid raft dynamics. Single-cell RNA sequencing reveals PODXL overexpression enhanced chimerism between human cells in mouse host embryos (hEPSCs 57%). Interestingly, in the human-mouse chimeras, laminin and collagen signaling-related pathways are dominant in PODXL overexpressing cells. It is concluded that cholesterol regulation via PODXL signaling is critical for ESC/EPSC.

17.
Molecules ; 16(1): 652-64, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21242944

RESUMO

The D-, L-enantiomeric pairs of common monosaccharides (xylose, ribose, rhamnose, arabinose, fucose, glucose, mannose, galactose, N-acetylgalactosamine, glucuronic acid and galacturonic acid) were derivatized with 2,3-naphthalenediamine to form the corresponding D-, L-aldo-NAIM derivatives. A simple and facile capillary electrophoretic method was established for sugar composition analysis by simultaneously determining the migration times of these aldo-NAIMs using borate buffer at high pH (100 mM, pH 9.0). The methodology is also applicable to sialic acid (ketose monosaccharides). The quantitation level of the proposed method was in the 10~500 ppm range and the LOD was 1 ppm. The enantioseparation of D, L pairs of aldo-NAIMs were also achieved by using modified sulfated-α-cyclodextrin as the chiral selector in phosphate buffer (300 mM, pH 3.0). In addition, the combination by reductive amination of amino-aldo-NAIM agent and D-, L-enantiomeric pairs of monosaccharides formed a diastereomeric pair for saccharide configuration analysis. Aldo-NAIM derivatives are thus shown to be rapid and efficient agents for analyzing saccharide compositions and configurations with good linearity and short analysis times via capillary electrophoresis.


Assuntos
Monossacarídeos/química , Eletroforese Capilar , Limite de Detecção , Estereoisomerismo
18.
Molecules ; 16(2): 1682-94, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21330957

RESUMO

A series of aldo-bis-indole derivatives (aldo-BINs) was prepared by aromatic C-alkylation reactions of aldoses and indole in acetic acid solution. Common monosaccharides such as glucose, mannose, galactose, fucose, xylose, rhamnose, ribose, arabinose and N-acetylglucosamine were smoothly derivatized to form the UV absorbing aldo-BINs. The use of a capillary electrophoretic method to separate these novel aldo-BIN derivatives was established. The capillary electrophoresis conditions were set by using borate buffer (100 mM) at high pH (pH 9.0). The limit of determination was assessed to be 25 nM. The enantioseparation of D, L-pairs of aldo-BINs based on chiral ligand-exchange capillary electrophoresis technology was also achieved by using modified hydroxypropyl-ß-cyclodextrin as the chiral selector in the presence of borate buffer. This aldose labeling method was applied successfully to the compositional and configurational analysis of saccharides, exemplified by a rapid and efficient method to simultaneously analyze the composition and configuration of saccharides from the medicinal herbs Cordyceps sinensis and Dendrobium huoshanense.


Assuntos
Boratos/química , Eletroforese Capilar/métodos , Indóis/química , Monossacarídeos/análise , Polissacarídeos/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Cordyceps/química , Ligantes , Estrutura Molecular , Extratos Vegetais/química , Estereoisomerismo
19.
Molecules ; 15(3): 1340-53, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20335985

RESUMO

A novel method for the conversion of unprotected and unmodified aldoses to aldo-imidazoles has been developed. Using iodine as a catalyst in acetic acid solution, a series of mono- and oligosaccharides, including those containing carboxyl and acetamido groups, undergo an oxidative condensation reaction with aromatic vicinal diamines at room temperature to give the corresponding aldo-imidazole products in high yields. No cleavage of the glycosidic bond occurs under the mild reaction conditions. The compositional analysis of saccharides is commonly realized by capillary electropheresis of the corresponding aldo-imidazole derivatives, which are easily synthesized by the reported iodine-promoted oxidative condensation. In addition, a series of aldo-imidazoles were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze molecular weight and ion intensity. The diamine-labeled saccharides showed enhanced signals in MALDI-TOF MS. The combined use of aldoimidazole derivatization and mass spectrometric analysis thus provides a rapid method for identification of saccharides, even when less than 1 pmol of saccharide is present in the sample. These results can be further applied to facilitate the isolation and analysis of novel saccharides.


Assuntos
Carboidratos/análise , Iodo/metabolismo , Naftalimidas/química , Catálise , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Cell Rep ; 32(6): 108016, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32755598

RESUMO

The influenza virus hemagglutinin (HA) and coronavirus spike (S) protein mediate virus entry. HA and S proteins are heavily glycosylated, making them potential targets for carbohydrate binding agents such as lectins. Here, we show that the lectin FRIL, isolated from hyacinth beans (Lablab purpureus), has anti-influenza and anti-SARS-CoV-2 activity. FRIL can neutralize 11 representative human and avian influenza strains at low nanomolar concentrations, and intranasal administration of FRIL is protective against lethal H1N1 infection in mice. FRIL binds preferentially to complex-type N-glycans and neutralizes viruses that possess complex-type N-glycans on their envelopes. As a homotetramer, FRIL is capable of aggregating influenza particles through multivalent binding and trapping influenza virions in cytoplasmic late endosomes, preventing their nuclear entry. Remarkably, FRIL also effectively neutralizes SARS-CoV-2, preventing viral protein production and cytopathic effect in host cells. These findings suggest a potential application of FRIL for the prevention and/or treatment of influenza and COVID-19.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Fabaceae/química , Infecções por Orthomyxoviridae/tratamento farmacológico , Lectinas de Plantas/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Células A549 , Administração Intranasal , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , COVID-19 , Embrião de Galinha , Chlorocebus aethiops , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , Lectinas de Plantas/administração & dosagem , Lectinas de Plantas/farmacologia , Ligação Proteica , SARS-CoV-2 , Células Vero , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa