RESUMO
Osteosarcoma (OS) is a malignant bone sarcoma arising from mesenchymal stem cells. The biological role of Acyl-CoA synthetase long-chain family member 4 (ACSL4), recently identified as an oncogene in numerous tumor types, remains largely unclear in OS. In this study, we investigated the expression of ACSL4 in OS tissues using immunohistochemistry staining (IHC) staining of a human tissue microarray and in OS cells by qPCR assay. Our findings revealed a significant up-regulation of ACSL4 in both OS tissues and cells. To further understand its biological effects, we conducted a series of loss-of-function experiments using ACSL4-depleted MNNG/HOS and U-2OS cell lines, focusing on OS cell proliferation, migration, and apoptosis in vitro. Our results demonstrated that ACSL4 knockdown remarkably suppressed OS cell proliferation, arrested cells in the G2 phase, induced cell apoptosis, and inhibited cell migration. Additionally, a subcutaneous xenograft mice model was established to validate the in vivo impact of ACSL4, revealing ACSL4 silencing impaired tumor growth in the OS xenograft mice. Additionally, we discovered that ACSL4 could regulate the phosphorylation level of Smad2 through cooperative interactions, and treatment with a TGF-ß inhibitor weakened the promoting effects of ACSL4 overexpression. In short, ACSL4 regulated OS progression by modulating TGF-ß/Smad2 signaling pathway. These findings underscore ACSL4 as a promising therapeutic target for OS patients and contribute novel insights into the pathogenesis of OS.
RESUMO
BACKGROUND: Reported studies on carcinoma have evaluated the significance of the microRNA miR-10b in the development and progression of many cancers. Increased expression of miR-10b is associated with the susceptibility to lymph node metastasis and distant metastasis in various tumors. RESULTS: The results of the meta-analysis revealed that lymph node metastasis occurred more frequently in the patients group with high expression level of miR-10b than in the patients group with low expression level of miR-10b (OR=4.65, 95% CI: 3.40-6.37, P <0.00001, fixed-effects model). Additionally, a similar result was observed in the association between miR-10b expression and distant metastasis (OR=2.70, 95% CI: 1.79-4.08, P <0.00001, fixed-effects model). MATERIALS AND METHODS: In this study, a meta-analysis, including the majority of the relevant articles, was conducted to investigate the association of the miR-10b expression level with metastasis in cancer patients. Systematic literature retrieval was performed by searching in a number of electronic databases. The meta-analysis was conducted using the RevMan 5.2 software and Stata SE12.0 software. A total of 962 patients with carcinoma from 9 studies were included in analysis. CONCLUSIONS: This meta-analysis demonstrated that the overexpression of miR-10b was significantly correlated with metastasis status, and indicated the potential clinical use of miR-10b as a molecular biomarker, particularly in assessing prognosis for patients with cancers.