Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183327

RESUMO

The escalation in the intensity, frequency, and duration of high temperature (HT) stress is currently unparalleled, which aggravates the challenges for crop production. Yet, the stage-dependent responses of sexual reproductive organs to HT stress at the morphological, physiological, and molecular levels, remain inadequately explored, particularly in pivotal staple crops. This review synthesized current knowledge regarding the mechanisms by which HT stress induces abnormalities and aberrations in reproductive growth and development, as well as alters the morphology and function of florets and their constituents, flowering patterns, and the processes of pollination and fertilization in maize (Zea mays L.). We identified the stage-specific sensitivities to HT stress through compiling and analyzing hundreds of lines of evidence, and accurately defined the sensitive period from days to hours timescale. The microspore tetrad phase of pollen development and anthesis (especially shortly after pollination) are most sensitive to HT stress, and even brief temperature spikes during these stages can lead to significant kernel loss. Unfortunately, these weak links are hidden and often neglected in practice. The impetuses behind the heat-induced impairments in seed set are closely related to carbon, reactive oxygen species, phytohormone signals, ion (e.g., Ca2+) homeostasis, plasma membrane structure and function, and others. At last, the recent advancements in understanding the genetic mechanisms underlying HT stress responses during maize sexual reproduction have been systematically summarized. This knowledge holds significant implications for the development of improved maize genotypes and effective crop management strategies to mitigate heat stress.

2.
Plant Commun ; : 101009, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915200

RESUMO

Transient heatwaves occur more frequently with climate warming, yet their impacts on crop yield are severely underestimated and even overlooked. Heatwaves spanning mere days or even hours during sensitive stages (e.g., microgametogenesis and flowering) can significantly reduce crop yield by disrupting plant reproduction. Recently, advancements in multi-omics and GWAS analysis have shed light on specific organs (e.g., pollen, lodicule, and style), key metabolic pathways (sugar and reactive oxygen species (ROS) metabolisms, Ca2+ homeostasis), and essential genes for transient heatwaves responses during the most sensitive stages in many crops. Based on this, this review places particular emphasis on the crop's heat-sensitive stages, using pollen development, floret opening, pollination, and fertilization as the central narrative thread. Complementing by key parts such as lodicule and tapetum, the multifaceted effects of transient heatwaves and their molecular basis are systematically demonstrated. A number of heat-tolerant genes for these processes have been identified in major crops such as maize and rice. The mechanisms and key heat-tolerant genes shared over different stages potentially facilitate the improvement of heat-tolerant crops more precisely.

3.
Sci Total Environ ; 933: 173143, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735336

RESUMO

In a warming climate, high temperature stress greatly threatens crop yields. Maize is critical to food security, but frequent extreme heat events coincide temporally and spatially with the period of kernel number determination (e.g., flowering stage), greatly limiting maize yields. In this context, how to increase or at least maintain maize yield has become more important. Nitrogen fertilizer (N) is widely used to improve maize yields, but its effect in heat stress is unclear. For this, we collected 1536 pairs of comparisons from 113 studies concerning N conducted in the past 20 years over China. We classified the data into two groups - without high temperature stress (NHT) and with high temperature stress during the critical period for maize kernel number determination (HT) - based on the national meteorological data. We comprehensively evaluated N effects on grain yield under HT and NHT using meta-analysis. The effect of N on maize yield became significantly smaller in HT than that in NHT. In NHT, soil characteristics, crop management practices, and climatic conditions all significantly affected N effects on maize yield, but in HT, only a few factors such as soil organic matter and mean annual precipitation significantly affected N effects. Hence, it is difficult to improve N effect by improving soil characteristics and crop management when meeting with high temperature stress during flowering. On average, N effect increased with increased N input, but there were respective N input thresholds in NHT and HT, beyond which N effects on maize yield remained stable. According to the thresholds, it is speculated that moderately reducing N input (~20 %) likely increased high temperature tolerance of maize during flowering. These findings have important implications for the optimization of N management under a warming climate.


Assuntos
Nitrogênio , Zea mays , Zea mays/fisiologia , Zea mays/crescimento & desenvolvimento , China , Fertilizantes , Temperatura Alta , Resposta ao Choque Térmico/fisiologia , Mudança Climática
4.
Org Lett ; 25(19): 3508-3511, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37154438

RESUMO

A pyrrolodithiin-derived box-like cyclophane (ProBox), featuring an adaptive geometry with stimuli-responsiveness, was designed and successfully constructed. The dynamic and foldable dithiin subunit endowed the cyclophane with a compressible cavity which can transform from a hex-nut geometry to a nearly rectangular box upon complexing guests with various sizes and shapes. The resulting pseudorotaxane complexes could be dethreaded via electrochemical oxidation. Such an adaptive cavity along with redox-switchable host-guest binding of ProBox could enable further applications in complex molecular switches and machines.

5.
Plant Commun ; 4(6): 100629, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37226443

RESUMO

Heat waves induced by climate warming have become common in food-producing regions worldwide, frequently coinciding with high temperature (HT)-sensitive stages of many crops and thus threatening global food security. Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set. The responses of seed set to HT involve multiple processes in both male and female reproductive organs, but we currently lack an integrated and systematic summary of these responses for the world's three leading food crops (rice, wheat, and maize). In the present work, we define the critical high temperature thresholds for seed set in rice (37.2°C ± 0.2°C), wheat (27.3°C ± 0.5°C), and maize (37.9°C ± 0.4°C) during flowering. We assess the HT sensitivity of these three cereals from the microspore stage to the lag period, including effects of HT on flowering dynamics, floret growth and development, pollination, and fertilization. Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening, anther dehiscence, pollen shedding number, pollen viability, pistil and stigma function, pollen germination on the stigma, and pollen tube elongation. HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize. Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy. Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress. However, cereal crops themselves also have protective measures under HT stress. Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops, especially rice, can partly protect themselves from heat damage. In maize, husk leaves reduce inner ear temperature by about 5°C compared with outer ear temperature, thereby protecting the later phases of pollen tube growth and fertilization processes. These findings have important implications for accurate modeling, optimized crop management, and breeding of new varieties to cope with HT stress in the most important staple crops.


Assuntos
Grão Comestível , Polinização , Temperatura , Temperatura Alta , Sementes , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa