Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1335774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322265

RESUMO

The tumor microenvironment (TME) is a heterogeneous ecosystem comprising cancer cells, immune cells, stromal cells, and various non-cellular components, all of which play critical roles in controlling tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), the core component of N 6-methyladenosine (m6A) writer, is frequently associated with abnormalities in the m6A epitranscriptome in different cancer types, impacting both cancer cells and the surrounding TME. While the impact of METTL3 on cancer cells has been extensively reviewed, its roles in TME and anti-cancer immunity have not been comprehensively summarized. This review aims to systematically summarize the functions of METTL3 in TME, particularly its effects on tumor-infiltrating immune cells. We also elaborate on the underlying m6A-dependent mechanism. Additionally, we discuss ongoing endeavors towards developing METTL3 inhibitors, as well as the potential of targeting METTL3 to bolster the efficacy of immunotherapy.


Assuntos
Metiltransferases , Neoplasias , Microambiente Tumoral , Linhagem Celular Tumoral , Metiltransferases/genética , RNA , Humanos , Neoplasias/genética
2.
J Pharm Biomed Anal ; 244: 116114, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522367

RESUMO

Qifu decoction (QFD) is an ancient traditional Chinese medicine (TCM) prescription for the treatment of heart failure. However, the mechanisms and active constituents of QFD are poorly understood. In this study, multi-matrices metabolomics (serum, urine, and myocardial mitochondria) based on ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOFMS), were employed for exploring the mechanisms of QFD against heart failure in rat model. Twenty-one, seventeen, and fifteen endogenous metabolite biomarkers associated with heart failure were identified from serum, urine, and myocardial mitochondria datasets, respectively. Fourteen, twelve, and ten of the identified serum, urine, and mitochondria biomarkers were significantly reversed by QFD, respectively. QFD-targeted pathways were involved in TCA cycle, branched chain amino acids metabolism, fatty acid ß-oxidation, sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, tryptophan metabolism, purine metabolism. In addition, QFD-derived constituents in serum were fully analyzed by UHPLC-Q-TOFMS and SUS-plot, and 24 QFD-derived components were identified in serum. Then, the correlation analysis between the QFD-reversed serum biomarkers and QFD-derived constituents in serum was employed to dissect the active constituents of QFD. It was found that eight prototypical components and three metabolites were highly correlated with efficacy and could serve as the active constituents of QFD against heart failure. Finally, neoline and calycosin, which highly correlated with branched-chain amino acid metabolism and fatty acid ß-oxidation, were selected to validate in Na2S2O4-induced cell model. It was found that neoline and calycosin provided a significant protective effect against Na2S2O4-induced cell death in a low dose-dependent manner and increased the expressions of the pathway-related protein CPT1B and BCAT2 in the cell model. In conclusions, these findings provided light on the mechanisms and active constituents of QFD against heart failure. Neoline and calycosin could be selected as potential quality-markers of QFD against heart failure.


Assuntos
Biomarcadores , Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Metabolômica , Ratos Sprague-Dawley , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Animais , Metabolômica/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Biomarcadores/sangue , Medicina Tradicional Chinesa/métodos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Modelos Animais de Doenças , Espectrometria de Massas/métodos
3.
Cancer Lett ; 589: 216836, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556105

RESUMO

Despite the approval of immune checkpoint blockade (ICB) therapy for various tumor types, its effectiveness is limited to only approximately 15% of patients with microsatellite instability-high (MSI-H) or mismatch repair deficiency (dMMR) colorectal cancer (CRC). Approximately 80%-85% of CRC patients have a microsatellite stability (MSS) phenotype, which features a rare T-cell infiltration. Thus, elucidating the mechanisms underlying resistance to ICB in patients with MSS CRC is imperative. In this study, we demonstrate that ubiquitin-specific peptidase 4 (USP4) is upregulated in MSS CRC tumors and negatively regulates the immune response against tumors in CRC. Additionally, USP4 represses the cellular interferon (IFN) response and antigen presentation and impairs PRR signaling-mediated cell death. Mechanistically, USP4 impedes the nuclear localization of interferon regulator Factor 3 (IRF3) by deubiquitinating the K63-polyubiquitin chain of TRAF6 and IRF3. Knockdown of USP4 enhances the infiltration of T cells in CRC tumors and overcomes ICB resistance in an MC38 syngeneic mouse model. Moreover, published datasets revealed that patients showing higher USP4 expression exhibited decreased responsiveness to anti-PD-L1 therapy. These findings highlight an essential role of USP4 in the suppression of antitumor immunity in CRC.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Interferons , Síndromes Neoplásicas Hereditárias , Animais , Camundongos , Humanos , Interferons/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Instabilidade de Microssatélites , Enzimas Desubiquitinantes/genética , Fator Regulador 3 de Interferon/genética , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
4.
J Ethnopharmacol ; 333: 118391, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38797377

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Parkinson's disease (PD) is the second most common neurodegenerative disorder with limited therapeutic options available. Neuroinflammation plays an important role in the occurrence and development of PD. Alkaloids extracted from Uncaria rhynchophylla (URA), have emerged as a potential neuroprotective agent because of its anti-inflammatory and anti-oxidant properties. Nevertheless, the underlying mechanism by which URA exerts neuroprotective effects in PD remains obscure. AIM OF THE STUDY: The main aim of this study was to investigate the neuroprotective effects and underlying mechanism of URA in the treatment of PD through in vivo and in vitro models, focusing on the neuroinflammation and oxidative stress pathways. MATERIALS AND METHODS: The protective effects of URA against PD were evaluated by neurobehavioral tests, immunohistochemistry, serum biochemical assays, and real-time quantitative polymerase chain reaction in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. The role of the TLR4/NF-κB/NLRP3 pathway and the Nrf2/HO-1 pathway in URA-mediated effects was examined in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and a microglia-neuron coculture system. RESULTS: URA significantly alleviated motor deficits and dopaminergic neurotoxicity, and reversed the abnormal secretion of inflammatory and oxidative stress factors in the serum of MPTP-induced mice. URA suppressed the gene expression of Toll-like receptor 4 (TLR4), NOD-like receptor protein 3, and cyclooxygenase 2 (COX2) in the striatum of PD mice. Further studies indicated that URA inhibited activation of the TLR4/NF-κB/NLRP3 pathway and enhanced activation of the Nrf2/HO-1 pathway, reduced reactive oxygen species (ROS) production, and reversed the secretion of inflammatory mediators in LPS-stimulated BV-2 microglial cells, thereby alleviating neuroinflammatory damage to SH-SY5Y neuronal cells. CONCLUSION: URA exerted neuroprotective effects against PD mainly by the inhibition of the TLR4/NF-κB/NLRP3 pathway and activation of the Nrf2/HO-1 antioxidant pathway, highlighting URA as a promising candidate for PD treatment.


Assuntos
Alcaloides , Fator 2 Relacionado a NF-E2 , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fármacos Neuroprotetores , Receptor 4 Toll-Like , Uncaria , Animais , Masculino , Camundongos , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Uncaria/química
5.
Cell Discov ; 10(1): 70, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937452

RESUMO

KRAS mutations are highly prevalent in a wide range of lethal cancers, and these mutant forms of KRAS play a crucial role in driving cancer progression and conferring resistance to treatment. While there have been advancements in the development of small molecules to target specific KRAS mutants, the presence of undruggable mutants and the emergence of secondary mutations continue to pose challenges in the clinical treatment of KRAS-mutant cancers. In this study, we developed a novel molecular tool called tumor-targeting KRAS degrader (TKD) that effectively targets a wide range of KRAS mutants. TKD is composed of a KRAS-binding nanobody, a cell-penetrating peptide selectively targeting cancer cells, and a lysosome-binding motif. Our data revealed that TKD selectively binds to KRAS in cancer cells and effectively induces KRAS degradation via a lysosome-dependent process. Functionally, TKD suppresses tumor growth with no obvious side effects and enhances the antitumor effects of PD-1 antibody and cetuximab. This study not only provides a strategy for developing drugs targeting "undruggable" proteins but also reveals that TKD is a promising therapeutic for treating KRAS-mutant cancers.

6.
Nat Med ; 30(4): 1035-1043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438735

RESUMO

Epigenetic modifications of chromatin, including histone acetylation, and tumor angiogenesis play pivotal roles in creating an immunosuppressive tumor microenvironment. In the randomized phase 2 CAPability-01 trial, we investigated the potential efficacy of combining the programmed cell death protein-1 (PD-1) monoclonal antibody sintilimab with the histone deacetylase inhibitor (HDACi) chidamide with or without the anti-vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab in patients with unresectable chemotherapy-refractory locally advanced or metastatic microsatellite stable/proficient mismatch repair (MSS/pMMR) colorectal cancer. Forty-eight patients were randomly assigned to either the doublet arm (sintilimab and chidamide, n = 23) or the triplet arm (sintilimab, chidamide and bevacizumab, n = 25). The primary endpoint of progression-free survival (PFS) rate at 18 weeks (18wPFS rate) was met with a rate of 43.8% (21 of 48) for the entire study population. Secondary endpoint results include a median PFS of 3.7 months, an overall response rate of 29.2% (14 of 48), a disease control rate of 56.3% (27 of 48) and a median duration of response of 12.0 months. The secondary endpoint of median overall survival time was not mature. The triplet arm exhibited significantly improved outcomes compared to the doublet arm, with a greater 18wPFS rate (64.0% versus 21.7%, P = 0.003), higher overall response rate (44.0% versus 13.0%, P = 0.027) and longer median PFS rate (7.3 months versus 1.5 months, P = 0.006). The most common treatment-emergent adverse events observed in both the triplet and doublet arms included proteinuria, thrombocytopenia, neutropenia, anemia, leukopenia and diarrhea. There were two treatment-related fatalities (hepatic failure and pneumonitis). Analysis of bulk RNA sequencing data from the patients suggested that the triplet combination enhanced CD8+ T cell infiltration, resulting in a more immunologically active tumor microenvironment. Our study suggests that the combination of a PD-1 antibody, an HDACi, and a VEGF antibody could be a promising treatment regimen for patients with MSS/pMMR advanced colorectal cancer. ClinicalTrials.gov registration: NCT04724239 .


Assuntos
Aminopiridinas , Benzamidas , Neoplasias Colorretais , Inibidores de Histona Desacetilases , Humanos , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/efeitos adversos , Bevacizumab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Inibidores de Histona Desacetilases/efeitos adversos , Inibidores de Histona Desacetilases/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
7.
Commun Biol ; 6(1): 1282, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114770

RESUMO

Metagenomic-based studies have predicted an extraordinary number of potential antibiotic-resistance genes (ARGs). These ARGs are hidden in various environmental bacteria and may become a latent crisis for antibiotic therapy via horizontal gene transfer. In this study, we focus on a resistance gene cph, which encodes a phosphotransferase (Cph) that confers resistance to the antituberculosis drug capreomycin (CMN). Sequence Similarity Network (SSN) analysis classified 353 Cph homologues into five major clusters, where the proteins in cluster I were found in a broad range of actinobacteria. We examine the function and antibiotics targeted by three putative resistance proteins in cluster I via biochemical and protein structural analysis. Our findings reveal that these three proteins in cluster I confer resistance to CMN, highlighting an important aspect of CMN resistance within this gene family. This study contributes towards understanding the sequence-structure-function relationships of the phosphorylation resistance genes that confer resistance to CMN.


Assuntos
Antibacterianos , Capreomicina , Capreomicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/genética , Genes Bacterianos , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa