Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biochim Biophys Acta ; 951(2-3): 344-50, 1988 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-2850011

RESUMO

Using highly purified bacteriophage lambda and E. coli replication proteins, we were able to reconstitute an in vitro system capable of replication ori lambda-containing plasmid DNA. The addition of a new E. coli factor, the grpE gene product, to this replication system reduced the level of dnaK protein required for efficient DNA synthesis by at least 10-fold, and also allowed the isolation of a stable DNA replication intermediate. Based on all available information, we propose a molecular mechanism for the action of the dnaK and grpE proteins during the prepriming reaction leading to lambda DNA synthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófago lambda/genética , Replicação do DNA , DNA Viral/biossíntese , Escherichia coli , Proteínas Virais/metabolismo , DNA Topoisomerases Tipo II/metabolismo
2.
J Mol Biol ; 314(4): 901-10, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11734006

RESUMO

The yeast mitochondrial chaperone Hsp78, a homologue of yeast cytosolic Hsp104 and bacterial ClpB, is required for maintenance of mitochondrial functions under heat stress. Here, Hsp78 was purified to homogeneity and shown to form a homo-hexameric complex, with an apparent molecular mass of approximately 440 kDa, in an ATP-dependent manner. Analysis of its ATPase activity reveals that the observed positive cooperativity effect depends both on Hsp78 and ATP concentration. Site-directed mutagenesis of the two putative Hsp78 nucleotide-binding domains suggest that the first nucleotide-binding domain is responsible for ATP hydrolysis and the second one for protein oligomerization. Studies on the chaperone activity of Hsp78 show that its cooperation with the mitochondrial Hsp70 system, consisting of Ssc1p, Mdj1p and Mge1p, is needed for the efficient reactivation of substrate proteins. These studies also suggest that the oligomerization but not the Hsp78 ATPase activity is essential for its chaperone activity.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Sítio Alostérico , Cromatografia em Gel , Reagentes de Ligações Cruzadas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Glutaral/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/isolamento & purificação , Luciferases/química , Luciferases/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Peso Molecular , Mutação/genética , Desnaturação Proteica/efeitos dos fármacos , Renaturação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ureia/farmacologia
3.
FEBS Lett ; 489(1): 92-6, 2001 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-11231020

RESUMO

The molecular chaperone protein Hsp78, a member of the Clp/Hsp100 family localized in the mitochondria of Saccharomyces cerevisiae, is required for maintenance of mitochondrial functions under heat stress. To characterize the biochemical mechanisms of Hsp78 function, Hsp78 was purified to homogeneity and its role in the reactivation of chemically and heat-denatured substrate protein was analyzed in vitro. Hsp78 alone was not able to mediate reactivation of firefly luciferase. Rather, efficient refolding was dependent on the simultaneous presence of Hsp78 and the mitochondrial Hsp70 machinery, composed of Ssc1p/Mdj1p/Mge1p. Bacterial DnaK/DnaJ/GrpE, which cooperates with the Hsp78 homolog, ClpB in Escherichia coli, could not substitute for the mitochondrial Hsp70 system. However, efficient Hsp78-dependent refolding of luciferase was observed if DnaK was replaced by Ssc1p in these experiments, suggesting a specific functional interaction of both chaperone proteins. These findings establish the cooperation of Hsp78 with the Hsp70 machinery in the refolding of heat-inactivated proteins and demonstrate a conserved mode of action of ClpB homologs.


Assuntos
ATPases Transportadoras de Cálcio , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Endopeptidase Clp , Proteínas de Choque Térmico HSP40 , Temperatura Alta , Luciferases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Chaperonas Moleculares/metabolismo , Desnaturação Proteica , Proteínas de Protozoários/metabolismo
4.
FEBS Lett ; 440(1-2): 172-4, 1998 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-9862449

RESUMO

Rifampicin is an antibiotic which binds to the beta subunit of prokaryotic RNA polymerases and prevents initiation of transcription. It was found previously that production of heat shock proteins in Escherichia coli cells after a shift from 30 degrees C to 43 degrees C is not completely inhibited by this antibiotic. Here we demonstrate that while activity of a pL-lacZ fusion (pL is a sigma70-dependent promoter) in E. coli cells is strongly inhibited by rifampicin, a p(groE)-lacZ fusion, whose activity is dependent on the sigam32 factor, retains significant residual activity even at relatively high rifampicin concentrations. Differential sensitivity to this antibiotic of RNA polymerase holoenzymes containing either the sigma70 or the sigma32 subunit was confirmed in vitro. Since the effects of an antibiotic that binds to the beta subunit can be modulated by the presence of either the sigma70 or the sigma32 subunit in the holoenzyme, it is tempting to speculate that binding of various sigma factors to the core of RNA polymerase results in different conformations of particular holoenzymes, including changes in the core enzyme.


Assuntos
RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Escherichia coli/genética , Holoenzimas/metabolismo , Regiões Promotoras Genéticas/genética , Rifampina/farmacologia , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Bacteriófago lambda/genética , Chaperoninas , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli , Genes Reporter , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA Bacteriano/biossíntese , Temperatura , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 90(23): 11019-23, 1993 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-8248205

RESUMO

All organisms respond to various forms of stress, including heat shock. The heat shock response has been universally conserved from bacteria to humans. In Escherichia coli the heat shock response is under the positive transcriptional control of the sigma 32 polypeptide and involves transient acceleration in the rate of synthesis of a few dozen genes. Three of the heat shock genes--dnaK, dnaJ, and grpE--are special because mutations in any one of these lead to constitutive levels of heat shock gene expression, implying that their products negatively autoregulate their own synthesis. The DnaK, DnaJ, and GrpE proteins have been known to function in various biological situations, including bacteriophage lambda replication. Here, we report the formation of an ATP hydrolysis-dependent complex of DnaJ, sigma 32, and DnaK proteins in vitro. This DnaJ-sigma 32-DnaK complex has been seen under different conditions, including glycerol gradient sedimentation and co-immunoprecipitation. The DnaK and DnaJ proteins in the presence of ATP can interfere with the efficient binding of sigma 32 to the RNA polymerase core, and are capable of disrupting a preexisting sigma 32-RNA polymerase complex. Our results suggest a possible mechanism for the autoregulation of the heat shock response.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/fisiologia , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico/fisiologia , Temperatura Alta , Fator sigma/fisiologia , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/metabolismo , Substâncias Macromoleculares , Ligação Proteica
7.
Proc Natl Acad Sci U S A ; 92(14): 6224-8, 1995 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-7603976

RESUMO

In Escherichia coli the heat shock response is under the positive control of the sigma 32 transcription factor. Three of the heat shock proteins, DnaK, DnaI, and GrpE, play a central role in the negative autoregulation of this response at the transcriptional level. Recently, we have shown that the DnaK and DnaJ proteins can compete with RNA polymerase for binding to the sigma 32 transcription factor in the presence of ATP, by forming a stable DnaJ-sigma 32-DnaK protein complex. Here, we report that DnaJ protein can catalytically activate DnaK's ATPase activity. In addition, DnaJ can activate DnaK to bind to sigma 32 in an ATP-dependent reaction, forming a stable sigma 32-DnaK complex. Results obtained with two DnaJ mutants, a missense and a truncated version, suggest that the N-terminal portion of DnaJ, which is conserved in all family members, is essential for this activation reaction. The activated form of DnaK binds preferentially to sigma 32 versus the bacteriophage lambda P protein substrate.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/isolamento & purificação , Proteínas de Choque Térmico/isolamento & purificação , Homeostase , Cinética , Peso Molecular , Ligação Proteica , Fator sigma/isolamento & purificação
8.
Proc Natl Acad Sci U S A ; 85(18): 6632-6, 1988 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-2970643

RESUMO

We examined the role of two Escherichia coli heat shock proteins, the dnaK and dnaJ gene products, during the initiation of lambda dv DNA replication in vitro. Using 14C-labeled lambda P protein we showed that the DnaK and DnaJ heat shock proteins function together to release lambda P protein from the preprimosomal complex consisting of lambda origin of replication-lambda O-lambda P-DnaB protein. Hydrolysis of ATP, catalyzed presumably by DnaK, is required during this reaction. Substitution of DnaK protein with that of the mutant DnaK756 protein blocks lambda P release. After DnaK and DnaJ action, the preprimosomal complex, isolated on Sepharose 4B, can support lambda dv DNA replication without any additional prepriming proteins. Using DnaK-affinity chromatography we showed that both lambda O and lambda P proteins bind to DnaK protein. The lambda P protein interacts with DnaK protein in a salt-resistant, hydrophobic manner, and ATP hydrolysis is necessary to elute at least part of lambda P protein from the DnaK-affinity column. The proposed mechanism of action of the prokaryotic DnaK and DnaJ heat shock proteins agrees with the hypothesis that Hsp70, the DnaK analogue of eukaryotes, uses ATP to disrupt hydrophobic aggregates [Pelham, H. R. B. (1986) Cell 46, 959-961].


Assuntos
Bacteriófago lambda/genética , Replicação do DNA/efeitos dos fármacos , DNA Viral/biossíntese , Escherichia coli/análise , Proteínas de Choque Térmico/metabolismo , Peso Molecular , Plasmídeos
9.
Mol Microbiol ; 31(1): 157-66, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9987118

RESUMO

The Escherichia coli sigma 32 transcriptional regulator has been shown to be degraded both in vivo and in vitro by the FtsH (HflB) protease, a member of the AAA protein family. In our attempts to study this process in detail, we found that two sigma 32 mutants lacking 15-20 C-terminal amino acids had substantially increased half-lives in vivo or in vitro, compared with wild-type sigma 32. A truncated version of sigma 32, sigma 32 C delta, was purified to homogeneity and shown to be resistant to FtsH-dependent degradation in vitro, suggesting that FtsH initiates sigma 32 degradation from its extreme C-terminal region. Purified sigma 32 C delta interacted with the DnaK and DnaJ chaperone proteins in a fashion similar to that of wild-type sigma 32. However, in contrast to wild-type sigma 32, sigma 32 C delta was largely deficient in its in vivo and in vitro interaction with core RNA polymerase. As a consequence, the truncated sigma 32 protein was completely non-functional in vivo, even when overproduced. Furthermore, it is shown that wild-type sigma 32 is protected from degradation by FtsH when complexed to the RNA polymerase core, but sensitive to proteolysis when in complex with the DnaK chaperone machine. Our results are in agreement with the proposal that the capacity of the DnaK chaperone machine to autoregulate its own synthesis negatively is simply the result of its ability to sequester sigma 32 from RNA polymerase, thus making it accessible to degradation by the FtsH protease.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/fisiologia , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Proteases Dependentes de ATP , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/metabolismo , Fator sigma/genética , Fatores de Transcrição/genética
10.
J Biol Chem ; 276(9): 6112-8, 2001 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-11096111

RESUMO

Ssc1, the major Hsp70 of the mitochondrial matrix, is involved in the translocation of proteins from the cytosol into the matrix and their subsequent folding. To better understand the physiological mechanism of action of this Hsp70, we have undertaken a biochemical analysis of Ssc1 and two mutant proteins, Ssc1--2 and Ssc1--201. ssc1--2 is a temperature-sensitive mutant defective in both translocation and folding; ssc1--201 contains a second mutation in this ssc1 gene that suppresses the temperature-sensitive growth defect of ssc1--2, correcting the translocation but not the folding defect. We found that although Ssc1 was competent to facilitate the refolding of denatured luciferase in vitro, both Ssc1--2 and Ssc1--201 showed significant defects, consistent with the data obtained with isolated mitochondria. Purified Ssc1--2 had a lowered affinity for a peptide substrate compared with wild-type Ssc1 but only in the ADP-bound state. This peptide binding defect was reversed in the suppressor protein Ssc1--201. However, a defect in the ability of Hsp40 to stimulate the ATPase activity of Ssc1--2 was not corrected in Ssc1--201. Thus, the inability of these two mutant proteins to efficiently facilitate luciferase refolding correlates with their defect in stimulation of ATPase activity by Hsp40s, indicating that this interaction is critical for protein folding in mitochondria.


Assuntos
ATPases Transportadoras de Cálcio , Proteínas de Choque Térmico HSP70/fisiologia , Mitocôndrias/química , Chaperonas Moleculares/fisiologia , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/farmacologia , Proteínas de Choque Térmico/fisiologia , Proteínas de Membrana/farmacologia , Tetra-Hidrofolato Desidrogenase/química
11.
EMBO J ; 8(5): 1601-8, 1989 May.
Artigo em Inglês | MEDLINE | ID: mdl-2527744

RESUMO

Based on previous in vivo genetic analysis of bacteriophage lambda growth, we have developed two in vitro lambda DNA replication systems composed entirely of purified proteins. One is termed 'grpE-independent' and consists of supercoiled lambda dv plasmid DNA, the lambda O and lambda P proteins, as well as the Escherichia coli dnaK, dnaJ, dnaB, dnaG, ssb, DNA gyrase and DNA polymerase III holoenzyme proteins. The second system includes the E.coli grpE protein and is termed 'grpE-dependent'. Both systems are specific for plasmid molecules carrying the ori lambda DNA initiation site. The major difference in the two systems is that the 'grpE-independent' system requires at least a 10-fold higher level of dnaK protein compared with the grpE-dependent one. The lambda DNA replication process may be divided into several discernible steps, some of which are defined by the isolation of stable intermediates. The first is the formation of a stable ori lambda-lambda O structure. The second is the assembly of a stable ori lambda-lambda O-lambda P-dnaB complex. The addition of dnaJ to this complex also results in an isolatable intermediate. The dnaK, dnaJ and grpE proteins destabilize the lambda P-dnaB interaction, thus liberating dnaB's helicase activity, resulting in unwinding of the DNA template. At this stage, a stable DNA replication intermediate can be isolated, provided that the grpE protein has acted and/or is present. Following this, the dnaG primase enzyme recognizes the single-stranded DNA-dnaB complex and synthesizes RNA primers. Subsequently, the RNA primers are extended into DNA by DNA polymerase III holoenzyme. The proposed model of the molecular series of events taking place at ori lambda is substantiated by the many demonstrable protein-protein interactions among the various participants.


Assuntos
Bacteriófago lambda/metabolismo , Replicação do DNA , Proteínas de Choque Térmico/metabolismo , Proteínas de Bactérias/metabolismo , DNA Viral/biossíntese , Escherichia coli/metabolismo , Cinética , Conformação de Ácido Nucleico , Proteínas Virais/metabolismo
12.
Proc Natl Acad Sci U S A ; 89(8): 3516-20, 1992 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-1565647

RESUMO

The heat shock response and the heat shock proteins have been conserved across evolution. In Escherichia coli, the heat shock response is positively regulated by the sigma 32 transcriptional factor and negatively regulated by a subset of the heat shock proteins themselves. In an effort to understand the regulation of the heat shock response, we have purified the sigma 32 polypeptide to homogeneity. During the purification procedure, we found that a large fraction of the overexpressed sigma 32 polypeptide copurified with the universally conserved DnaK heat shock protein (the prokaryotic equivalent of the 70-kDa heat shock protein, HSP70). Further experiments established that purified sigma 32 bound to DnaK and that this complex was disrupted in the presence of ATP. Consistent with the fact that dnaK756 mutant bacteria overexpress heat shock proteins at all temperatures, purified DnaK756 mutant protein did not appreciably bind to sigma 32.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/fisiologia , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Centrifugação com Gradiente de Concentração , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Proteínas de Choque Térmico/isolamento & purificação , Temperatura Alta , Substâncias Macromoleculares , Peso Molecular , Ligação Proteica , Fator sigma/isolamento & purificação
13.
EMBO J ; 14(20): 5085-93, 1995 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-7588636

RESUMO

In Escherichia coli individual sigma factors direct RNA polymerase (RNAP) to specific promoters. Upon heat shock induction there is a transient increase in the rate of transcription of approximately 20 heat shock genes, whose promoters are recognized by the RNAP-sigma 32 rather than the RNAP-sigma 70 holoenzyme. At least three heat shock proteins, DnaK, DnaJ and GrpE, are involved in negative modulation of the sigma 32-dependent heat shock response. Here we show, using purified enzymes, that upon heat treatment of RNAP holoenzyme the sigma 70 factor is preferentially inactivated, whereas the resulting heat-treated RNAP core is still able to initiate transcription once supplemented with sigma 32 (or fresh sigma 70). Heat-aggregated sigma 70 becomes a target for the joint action of DnaK, DnaJ and GrpE proteins, which reactivate it in an ATP-dependent reaction. The RNAP-sigma 32 holoenzyme is relatively stable at temperatures at which the RNAP-sigma 70 holoenzyme is inactivated. Furthermore, we show that formation of the RNAP-sigma 32 holoenzyme is favored over that of RNAP-sigma 70 at elevated temperatures. We propose a model of negative autoregulation of the heat shock response in which cooperative action of DnaK, DnaJ and GrpE heat shock proteins switches transcription back to constitutively expressed genes through the simultaneous reactivation of heat-aggregated sigma 70, as well as sequestration of sigma 32 away from RNAP.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Resposta ao Choque Térmico , Fator sigma/metabolismo , Fatores de Transcrição , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Modelos Genéticos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Transcrição Gênica
14.
J Biol Chem ; 272(45): 28539-44, 1997 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-9353316

RESUMO

The DnaK/DnaJ/GrpE heat shock proteins of Escherichia coli constitute the prototype DnaK chaperone machine. Various studies have shown that these three proteins work synergistically in a diverse array of biological functions, including protein folding and disaggregation, proteolysis, and transport across biological membranes. We have overexpressed and purified the mitochondrial Saccharomyces cerevisiae DnaJ homologue, Mdj1pDelta55, which lacks the mitochondrial presequence, and studied its biochemical properties in well defined in vitro systems. We find that Mdj1pDelta55 interacts with DnaK as judged both by an enzyme-linked immunosorbent assay, as well as stimulation of DnaK's weak ATPase activity in the presence of GrpE. In addition, Mdj1pDelta55 not only interacts with denatured firefly luciferase on its own, but also enables DnaK to bind to it in an ATP-dependent mode. Using co-immunoprecipitation assays we can demonstrate the presence of a stable Mdj1pDelta55-luciferase-DnaK complex. However, in contrast to DnaJ, Mdj1pDelta55 does not appear to interact well with certain seemingly folded proteins, such as the sigma32 heat shock transcription factor or the lambdaP DNA replication protein. Finally, Mdj1pDelta55 can substitute perfectly well for DnaJ in the refolding of denatured firefly luciferase by the DnaK chaperone machine. These studies demonstrate that Mdj1pDelta55 has conserved most of DnaJ's known biological properties, thus supporting an analogous functional role in yeast mitochondria.


Assuntos
Proteínas de Escherichia coli , Proteínas Fúngicas/isolamento & purificação , Proteínas de Choque Térmico/isolamento & purificação , Proteínas de Membrana/isolamento & purificação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Adenosina Trifosfatases/metabolismo , Ensaio de Imunoadsorção Enzimática , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Luciferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Desnaturação Proteica , Dobramento de Proteína
15.
Proc Natl Acad Sci U S A ; 95(26): 15259-63, 1998 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-9860956

RESUMO

Using the bacteriophage lambda DNA replication system, composed entirely of purified proteins, we have tested the accessibility of the short-lived lambda O protein to the ClpP/ClpX protease during the various stages of lambda DNA replication. We find that binding of lambda O protein to its orilambda DNA sequence, leading to the so-called "O-some" formation, largely inhibits its degradation. On the contrary, under conditions permissive for transcription, the lambda O protein bound to the orilambda sequence becomes largely accessible to ClpP/ClpX-mediated proteolysis. However, when the lambda O protein is part of the larger orilambda:O.P.DnaB preprimosomal complex, transcription does not significantly increase ClpP/ClpX-dependent lambda O degradation. These results show that transcription can stimulate proteolysis of a protein that is required for the initiation of DNA replication.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias , Bacteriófago lambda/genética , Serina Endopeptidases/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Replicação Viral , Bacteriófago lambda/fisiologia , DNA Helicases/metabolismo , Replicação do DNA , DNA Viral/genética , DNA Viral/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , DnaB Helicases , Endopeptidase Clp , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/virologia , Cinética , Modelos Genéticos , Origem de Replicação
16.
J Biol Chem ; 266(22): 14491-6, 1991 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-1830586

RESUMO

The DnaK protein of Escherichia coli and its eukaryotic hsp70 analogues are known to bind some polypeptides and to release or dissociate from them following ATP hydrolysis. Here we demonstrate that hydrolysis (and not simply binding) of nucleotide triphosphates leads to a change in the DnaK protein, from the "closed" to the "open" conformation. A conformational change is not observed with the mutant DnaK756 protein, which is always found in the open conformation. Although ATP is the preferred substrate, the hydrolysis of CTP, GTP, UTP, and dATP also results in DnaK's conversion from a closed to an open conformation. The ability of DnaK to hydrolyze various triphosphates correlates perfectly with its ability to release the bound denatured bovine pancreatic trypsin inhibitor polypeptide.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Citidina Trifosfato/metabolismo , Eletroforese em Gel de Poliacrilamida , Guanosina Trifosfato/metabolismo , Proteínas de Choque Térmico/genética , Hidrólise , Mutação , Conformação Proteica , Especificidade por Substrato , Tripsina , Uridina Trifosfato/metabolismo
17.
J Biol Chem ; 270(33): 19307-11, 1995 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-7642606

RESUMO

Using two independent experimental approaches to monitor protein-protein interactions (enzyme-linked immunosorbent assay and size exclusion high performance liquid chromatography) we describe a general mechanism by which DnaJ modulates the binding of the DnaK chaperone to various native protein substrates, e.g. lambda P, lambda O, delta 32, P1, RepA, as well as permanently denatured alpha-carboxymethylated lactalbumin. The presence of DnaJ promotes the DnaK for efficient DnaK-substrate complex formation. ATP hydrolysis is absolutely required for such DnaJ-dependent activation of DnaK for binding to both native and denatured protein substrates. Although ADP can stabilize such as an activated DnaK-protein complex, it cannot substitute for ATP in the activation reaction. In the presence of DnaJ and ATP, DnaK possesses the affinity to different substrates which correlates well with the affinity of DnaJ alone for these protein substrates. Only when the affinity of the DnaJ chaperone for its protein substrate is relatively high (e.g. delta 32, RepA) can a tertiary complex DnaK-substrate-DnaJ be detected. In the case that DnaJ binds weakly to its substrate (lambda P, alpha-carboxymethylated lactalbumin), DnaJ is only transiently associated with the DnaK-substrate complex, but the DnaK activation reaction still occurs, albeit less efficiently.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Difosfato de Adenosina/farmacologia , Proteínas de Choque Térmico HSP40 , Hidrólise , Ligação Proteica , Desnaturação Proteica
18.
Proc Natl Acad Sci U S A ; 88(7): 2874-8, 1991 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-1826368

RESUMO

The products of the Escherichia coli dnaK, dnaJ, and grpE heat shock genes have been previously shown to be essential for bacteriophage lambda DNA replication at all temperatures and for bacterial survival under certain conditions. DnaK, the bacterial heat shock protein hsp70 analogue and putative chaperonin, possesses a weak ATPase activity. Previous work has shown that ATP hydrolysis allows the release of various polypeptides complexed with DnaK. Here we demonstrate that the ATPase activity of DnaK can be greatly stimulated, up to 50-fold, in the simultaneous presence of the DnaJ and GrpE heat shock proteins. The presence of either DnaJ or GrpE alone results in a slight stimulation of the ATPase activity of DnaK. The action of the DnaJ and GrpE proteins may be sequential, since the presence of DnaJ alone leads to an acceleration in the rate of hydrolysis of the DnaK-bound ATP. The presence of GrpE alone increases the rate of release of bound ATP or ADP without affecting the rate of hydrolysis. The stimulation of the ATPase activity of DnaK may contribute to its more efficient recycling, and it helps explain why mutations in dnaK, dnaJ, or grpE genes often exhibit similar pleiotropic phenotypes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico HSP40 , Cinética , Ligação Proteica , Termodinâmica
19.
J Biol Chem ; 265(6): 3022-9, 1990 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-2154468

RESUMO

The process of initiation of lambda DNA replication requires the assembly of the proper nucleoprotein complex at the origin of replication, ori lambda. The complex is composed of both phage and host-coded proteins. The lambda O initiator protein binds specifically to ori lambda. The lambda P initiator protein binds to both lambda O and the host-coded dnaB helicase, giving rise to an ori lambda DNA.lambda O.lambda P.dnaB structure. The dnaK and dnaJ heat shock proteins have been shown capable of dissociating this complex. The thus freed dnaB helicase unwinds the duplex DNA template at the replication fork. In this report, through cross-linking, size chromatography, and protein affinity chromatography, we document some of the protein-protein interactions occurring at ori lambda. Our results show that the dnaK protein specifically interacts with both lambda O and lambda P, and that the dnaJ protein specifically interacts with the dnaB helicase.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófago lambda/metabolismo , Replicação do DNA , Escherichia coli/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/isolamento & purificação , Bacteriófago lambda/genética , Centrifugação com Gradiente de Concentração , Cromatografia de Afinidade , Cromatografia em Gel , Escherichia coli/genética , Cinética , Modelos Biológicos , Nucleoproteínas/metabolismo , Ligação Proteica , Proteínas Virais/isolamento & purificação
20.
J Biol Chem ; 271(25): 14840-8, 1996 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-8662861

RESUMO

DnaJ is a molecular chaperone, which not only binds to its various protein substrates, but can also activate the DnaK cochaperone to bind to its various protein substrates as well. DnaJ is a modular protein, which contains a putative zinc finger motif of unknown function. Quantitation of the released Zn(II) ions, upon challenge with p-hydroxymercuriphenylsulfonic acid, and by atomic absorption showed that two Zn(II) ions interact with each monomer of DnaJ. Following the release of Zn(II) ions, the free cysteine residues probably form disulfide bridge(s), which contribute to overcoming the destabilizing effect of losing Zn(II). Supporting this view, infrared and circular dichroism studies show that the DnaJ secondary structure is largely unaffected by the release of Zn(II). Moreover, infrared spectra recorded at different temperatures, as well as scanning calorimetry, show that the Zn(II) ions help to stabilize DnaJ's tertiary structure. An internal 57-amino acid deletion of the cysteine-reach region did not noticeably affect the affinity of this mutant protein, DnaJDelta144-200, to bind DnaK nor its ability to stimulate DnaK's ATPase activity. However, the DnaJDelta144-200 was unable to induce DnaK to a conformation required for the stabilization of the DnaK-substrate complex. Additionally, the DnaJDelta144-200 mutant protein alone was unimpaired in its ability to interact with its final sigma32 transcription factor substrate, but exhibited reduced affinity toward its P1 RepA and lambdaP substrates. Finally, these in vitro results correlate well with the in vivo observed partial inhibition of bacteriophage lambda growth in a DnaJDelta144-200 mutant background.


Assuntos
Proteínas de Choque Térmico/química , Dedos de Zinco , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Sítios de Ligação , Calorimetria , Varredura Diferencial de Calorimetria , Cisteína , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/isolamento & purificação , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Receptores de Esteroides/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Espectrofotometria , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa