RESUMO
Resistance to insulin and insulin-like growth factor 1 (IGF1) in pancreatic ß-cells causes overt diabetes in mice; thus, therapies that sensitize ß-cells to insulin may protect patients with diabetes against ß-cell failure1-3. Here we identify an inhibitor of insulin receptor (INSR) and IGF1 receptor (IGF1R) signalling in mouse ß-cells, which we name the insulin inhibitory receptor (inceptor; encoded by the gene Iir). Inceptor contains an extracellular cysteine-rich domain with similarities to INSR and IGF1R4, and a mannose 6-phosphate receptor domain that is also found in the IGF2 receptor (IGF2R)5. Knockout mice that lack inceptor (Iir-/-) exhibit signs of hyperinsulinaemia and hypoglycaemia, and die within a few hours of birth. Molecular and cellular analyses of embryonic and postnatal pancreases from Iir-/- mice showed an increase in the activation of INSR-IGF1R in Iir-/- pancreatic tissue, resulting in an increase in the proliferation and mass of ß-cells. Similarly, inducible ß-cell-specific Iir-/- knockout in adult mice and in ex vivo islets led to an increase in the activation of INSR-IGF1R and increased proliferation of ß-cells, resulting in improved glucose tolerance in vivo. Mechanistically, inceptor interacts with INSR-IGF1R to facilitate clathrin-mediated endocytosis for receptor desensitization. Blocking this physical interaction using monoclonal antibodies against the extracellular domain of inceptor resulted in the retention of inceptor and INSR at the plasma membrane to sustain the activation of INSR-IGF1R in ß-cells. Together, our findings show that inceptor shields insulin-producing ß-cells from constitutive pathway activation, and identify inceptor as a potential molecular target for INSR-IGF1R sensitization and diabetes therapy.
Assuntos
Glicemia/metabolismo , Antagonistas da Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Animais , Glicemia/análise , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Tamanho Celular , Clatrina/metabolismo , Células Endócrinas/metabolismo , Endocitose , Retículo Endoplasmático/metabolismo , Teste de Tolerância a Glucose , Complexo de Golgi/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Proteínas de Membrana , Camundongos , Proteínas de Neoplasias/química , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologiaRESUMO
RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are key regulators of gene expression, but their joint functions in coordinating cell fate decisions are poorly understood. Here we show that the expression and activity of the RBP TDP-43 and the long isoform of the lncRNA Neat1, the scaffold of the nuclear compartment "paraspeckles," are reciprocal in pluripotent and differentiated cells because of their cross-regulation. In pluripotent cells, TDP-43 represses the formation of paraspeckles by enhancing the polyadenylated short isoform of Neat1. TDP-43 also promotes pluripotency by regulating alternative polyadenylation of transcripts encoding pluripotency factors, including Sox2, which partially protects its 3' UTR from miR-21-mediated degradation. Conversely, paraspeckles sequester TDP-43 and other RBPs from mRNAs and promote exit from pluripotency and embryonic patterning in the mouse. We demonstrate that cross-regulation between TDP-43 and Neat1 is essential for their efficient regulation of a broad network of genes and, therefore, of pluripotency and differentiation.
Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias Murinas/metabolismo , RNA Longo não Codificante/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , MicroRNAs/genética , Células-Tronco Pluripotentes/metabolismo , Poliadenilação/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
Computational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank ( https://cellrank.org ) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally.
Assuntos
Algoritmos , Biologia Computacional/métodos , Pâncreas Exócrino/citologia , Análise de Célula Única/métodos , Software , Animais , Diferenciação Celular/genética , Linhagem da Célula , Reprogramação Celular , Humanos , Pulmão/citologia , RNA , RegeneraçãoRESUMO
A key pathological feature of Parkinson's Disease (PD) is the progressive degeneration of dopaminergic neurons (DAns) in the substantia nigra pars compacta. Considering the major role of EN1 in the development and maintenance of these DAns and the implications from En1 mouse models, it is highly interesting to study the molecular and protective effect of EN1 also in a human cellular model. Therefore, we generated EN1 knock-out (ko) human induced pluripotent stem cell (hiPSCs) lines and analyzed these during neuronal differentiation. Although the EN1 ko didn't interfere with neuronal differentiation and generation of tyrosine hydroxylase positive (TH+) neurons per se, the neurons exhibited shorter neurites. Furthermore, mitochondrial respiration, as well as mitochondrial complex I abundance was significantly reduced in fully differentiated neurons. To understand the implications of an EN1 ko during differentiation, we performed a transcriptome analysis of human neuronal precursor cells (hNPCs) which unveiled alterations in cilia-associated pathways. Further analysis of ciliary morphology revealed an elongation of primary cilia in EN1-deficient hNPCs. Besides, also Wnt signaling pathways were severely affected. Upon stimulating hNPCs with Wnt which drastically increased EN1 expression in WT lines, the phenotypes concerning mitochondrial function and cilia were exacerbated in EN1 ko hNPCs. They failed to enhance the expression of the complex I subunits NDUFS1 and 3, and now displayed a reduced mitochondrial respiration. Furthermore, Wnt stimulation decreased ciliogenesis in EN1 ko hNPCs but increased ciliary length even further. This further highlights the relevance of primary cilia next to mitochondria for the functionality and correct maintenance of human DAns and provides new possibilities to establish neuroprotective therapies for PD.
Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Camundongos , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/fisiologia , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Substância Negra/metabolismoRESUMO
ß cells produce, store, and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of ß cell function is mostly derived from studies of ex vivo isolated islets in rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo-labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.
Assuntos
Animais Geneticamente Modificados/metabolismo , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Exocitose , Glucose/metabolismo , Secreção de Insulina , Masculino , SuínosRESUMO
BACKGROUND: The reactivation of genetic programs from early development is a common mechanism for injury-induced organ regeneration. T-box 3 (TBX3) is a member of the T-box family of transcription factors previously shown to regulate pluripotency and subsequent lineage commitment in a number of tissues, including limb and lung. TBX3 is also involved in lung and heart organogenesis. Here, we provide a comprehensive and thorough characterization of TBX3 and its role during pancreatic organogenesis and regeneration. RESULTS: We interrogated the level and cell specificity of TBX3 in the developing and adult pancreas at mRNA and protein levels at multiple developmental stages in mouse and human pancreas. We employed conditional mutagenesis to determine its role in murine pancreatic development and in regeneration after the induction of acute pancreatitis. We found that Tbx3 is dynamically expressed in the pancreatic mesenchyme and epithelium. While Tbx3 is expressed in the developing pancreas, its absence is likely compensated by other factors after ablation from either the mesenchymal or epithelial compartments. In an adult model of acute pancreatitis, we found that a lack of Tbx3 resulted in increased proliferation and fibrosis as well as an enhanced inflammatory gene programs, indicating that Tbx3 has a role in tissue homeostasis and regeneration. CONCLUSIONS: TBX3 demonstrates dynamic expression patterns in the pancreas. Although TBX3 is dispensable for proper pancreatic development, its absence leads to altered organ regeneration after induction of acute pancreatitis.
Assuntos
Pancreatite , Adulto , Humanos , Animais , Camundongos , Doença Aguda , Pancreatite/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Pâncreas/metabolismo , Organogênese/genéticaRESUMO
AIMS/HYPOTHESIS: Glucagon receptor (GCGR) antagonism ameliorates hyperglycaemia and promotes beta cell regeneration in mouse models of type 2 diabetes. However, the underlying mechanisms remain unclear. The present study aimed to investigate the mechanism of beta cell regeneration induced by GCGR antagonism in mice. METHODS: The db/db mice and high-fat diet (HFD)+streptozotocin (STZ)-induced mice with type 2 diabetes were treated with antagonistic GCGR monoclonal antibody (mAb), and the metabolic variables and islet cell quantification were evaluated. Plasma cytokine array and liver RNA sequencing data were used to screen possible mediators, including fibroblast growth factor 21 (FGF21). ELISA, quantitative RT-PCR and western blot were applied to verify FGF21 change. Blockage of FGF21 signalling by FGF21-neutralising antibody (nAb) was used to clarify whether FGF21 was involved in the effects of GCGR mAb on the expression of beta cell identity-related genes under plasma-conditional culture and hepatocyte co-culture conditions. FGF21 nAb-treated db/db mice, systemic Fgf21-knockout (Fgf21-/-) diabetic mice and hepatocyte-specific Fgf21-knockout (Fgf21Hep-/-) diabetic mice were used to reveal the involvement of FGF21 in beta cell regeneration. A BrdU tracing study was used to analyse beta cell proliferation in diabetic mice treated with GCGR mAb. RESULTS: GCGR mAb treatment improved blood glucose control, and increased islet number (db/db 1.6±0.1 vs 0.8±0.1 per mm2, p<0.001; HFD+STZ 1.2±0.1 vs 0.5±0.1 per mm2, p<0.01) and area (db/db 2.5±0.2 vs 1.2±0.2%, p<0.001; HFD+STZ 1.0±0.1 vs 0.3±0.1%, p<0.01) in diabetic mice. The plasma cytokine array and liver RNA sequencing data showed that FGF21 levels in plasma and liver were upregulated by GCGR antagonism. The GCGR mAb induced upregulation of plasma FGF21 levels (db/db 661.5±40.0 vs 466.2±55.7 pg/ml, p<0.05; HFD+STZ 877.0±106.8 vs 445.5±54.0 pg/ml, p<0.05) and the liver levels of Fgf21 mRNA (db/db 3.2±0.5 vs 1.8±0.1, p<0.05; HFD+STZ 2.0±0.3 vs 1.0±0.2, p<0.05) and protein (db/db 2.0±0.2 vs 1.4±0.1, p<0.05; HFD+STZ 1.6±0.1 vs 1.0±0.1, p<0.01). Exposure to plasma or hepatocytes from the GCGR mAb-treated mice upregulated the mRNA levels of characteristic genes associated with beta cell identity in cultured mouse islets and a beta cell line, and blockage of FGF21 activity by an FGF21 nAb diminished this upregulation. Notably, the effects of increased beta cell number induced by GCGR mAb were attenuated in FGF21 nAb-treated db/db mice, Fgf21-/- diabetic mice and Fgf21Hep-/- diabetic mice. Moreover, GCGR mAb treatment enhanced beta cell proliferation in the two groups of diabetic mice, and this effect was weakened in Fgf21-/- and Fgf21Hep-/- mice. CONCLUSIONS/INTERPRETATION: Our findings demonstrate that liver-derived FGF21 is involved in the GCGR antagonism-induced beta cell regeneration in a mouse model of type 2 diabetes.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Camundongos , Animais , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Diabetes Mellitus Experimental/metabolismo , Receptores de Glucagon/genética , Modelos Animais de Doenças , Fígado/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Fine-tuned dissolution of pluripotency is critical for proper cell differentiation. Here we show that the mesodermal transcription factor, T, globally affects the properties of pluripotency through binding to Oct4 and to the loci of other pluripotency regulators. Strikingly, lower T levels coordinately affect naïve pluripotency, thereby directly activating the germ cell differentiation program, in contrast to the induction of germ cell fate of primed models. Contrary to the effect of lower T levels, higher T levels more severely affect the pluripotency state, concomitantly enhancing the somatic differentiation program and repressing the germ cell differentiation program. Consistent with such in vitro findings, nascent germ cells in vivo are detected in the region of lower T levels at the posterior primitive streak. Furthermore, T and core pluripotency regulators co-localize at the loci of multiple germ cell determinants responsible for germ cell development. In conclusion, our findings indicate that residual pluripotency establishes the earliest and fundamental regulatory mechanism for inductive germline segregation from somatic lineages.
Assuntos
Células Germinativas , Mesoderma , Diferenciação Celular , Separação Celular , Fatores de TranscriçãoRESUMO
Hypothalamic astrocytes are particularly affected by energy-dense food consumption. How the anatomical location of these glial cells and their spatial molecular distribution in the arcuate nucleus of the hypothalamus (ARC) determine the cellular response to a high caloric diet remains unclear. In this study, we investigated their distinctive molecular responses following exposure to a high-fat high-sugar (HFHS) diet, specifically in the ARC. Using RNA sequencing and proteomics, we showed that astrocytes have a distinct transcriptomic and proteomic profile dependent on their anatomical location, with a major proteomic reprogramming in hypothalamic astrocytes. By ARC single-cell sequencing, we observed that a HFHS diet dictates time- and cell- specific transcriptomic responses, revealing that astrocytes have the most distinct regulatory pattern compared to other cell types. Lastly, we topographically and molecularly characterized astrocytes expressing glial fibrillary acidic protein and/or aldehyde dehydrogenase 1 family member L1 in the ARC, of which the abundance was significantly increased, as well as the alteration in their spatial and molecular profiles, with a HFHS diet. Together, our results provide a detailed multi-omics view on the spatial and temporal changes of astrocytes particularly in the ARC during different time points of adaptation to a high calorie diet.
Assuntos
Astrócitos , Proteômica , Núcleo Arqueado do Hipotálamo/metabolismo , Astrócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Hipotálamo/metabolismoRESUMO
Single cell genomics has become a popular approach to uncover the cellular heterogeneity of progenitor and terminally differentiated cell types with great precision. This approach can also delineate lineage hierarchies and identify molecular programmes of cell-fate acquisition and segregation. Nowadays, tens of thousands of cells are routinely sequenced in single cell-based methods and even more are expected to be analysed in the future. However, interpretation of the resulting data is challenging and requires computational models at multiple levels of abstraction. In contrast to other applications of single cell sequencing, where clustering approaches dominate, developmental systems are generally modelled using continuous structures, trajectories and trees. These trajectory models carry the promise of elucidating mechanisms of development, disease and stimulation response at very high molecular resolution. However, their reliable analysis and biological interpretation requires an understanding of their underlying assumptions and limitations. Here, we review the basic concepts of such computational approaches and discuss the characteristics of developmental processes that can be learnt from trajectory models.
Assuntos
Genômica/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Cromatina/química , Biologia Computacional/métodos , Biologia do Desenvolvimento/tendências , Humanos , Metilação , Camundongos , Modelos Biológicos , Dinâmica não Linear , Proteômica , RNA/química , Splicing de RNA , Análise de Sequência de RNA , Software , Células-Tronco/citologiaRESUMO
Deciphering mechanisms of endocrine cell induction, specification and lineage allocation in vivo will provide valuable insights into how the islets of Langerhans are generated. Currently, it is ill defined how endocrine progenitors segregate into different endocrine subtypes during development. Here, we generated a novel neurogenin 3 (Ngn3)-Venus fusion (NVF) reporter mouse line, that closely mirrors the transient endogenous Ngn3 protein expression. To define an in vivo roadmap of endocrinogenesis, we performed single cell RNA sequencing of 36,351 pancreatic epithelial and NVF+ cells during secondary transition. This allowed Ngn3low endocrine progenitors, Ngn3high endocrine precursors, Fev+ endocrine lineage and hormone+ endocrine subtypes to be distinguished and time-resolved, and molecular programs during the step-wise lineage restriction steps to be delineated. Strikingly, we identified 58 novel signature genes that show the same transient expression dynamics as Ngn3 in the 7260 profiled Ngn3-expressing cells. The differential expression of these genes in endocrine precursors associated with their cell-fate allocation towards distinct endocrine cell types. Thus, the generation of an accurately regulated NVF reporter allowed us to temporally resolve endocrine lineage development to provide a fine-grained single cell molecular profile of endocrinogenesis in vivo.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/genética , Pâncreas/embriologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular/genética , Linhagem da Célula , Células Endócrinas/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Células Secretoras de Insulina/citologia , Camundongos , Regeneração , Transdução de Sinais , Células-Tronco/citologia , Proteínas Wnt/metabolismoRESUMO
BACKGROUND: Islet xenotransplantation is a promising concept for beta-cell replacement therapy. Reporter genes for noninvasive monitoring of islet engraftment, graft mass changes, long-term survival, and graft failure support the optimization of transplantation strategies. Near-infrared fluorescent protein (iRFP) is ideal for fluorescence imaging (FI) in tissue, but also for multispectral optoacoustic tomography (MSOT) with an even higher imaging depth. Therefore, we generated reporter pigs ubiquitously expressing iRFP. METHODS: CAG-iRPF720 transgenic reporter pigs were generated by somatic cell nuclear transfer from FACS-selected stable transfected donor cells. Neonatal pig islets (NPIs) were transplanted into streptozotocin-diabetic immunodeficient NOD-scid IL2Rgnull (NSG) mice. FI and MSOT were performed to visualize different numbers of NPIs and to evaluate associations between signal intensity and glycemia. MSOT was also tested in a large animal model. RESULTS: CAG-iRFP transgenic NPIs were functionally equivalent with wild-type NPIs. Four weeks after transplantation under the kidney capsule, FI revealed a twofold higher signal for 4000-NPI compared to 1000-NPI grafts. Ten weeks after transplantation, the fluorescence intensity of the 4000-NPI graft was inversely correlated with glycemia. After intramuscular transplantation into diabetic NSG mice, MSOT revealed clear dose-dependent signals for grafts of 750, 1500, and 3000 NPIs. Dose-dependent MSOT signals were also revealed in a pig model, with stronger signals after subcutaneous (depth â¼6 mm) than after submuscular (depth â¼15 mm) placement of the NPIs. CONCLUSIONS: Islets from CAG-iRFP transgenic pigs are fully functional and accessible to long-term monitoring by state-of-the-art imaging modalities. The novel reporter pigs will support the development and preclinical testing of novel matrices and engraftment strategies for porcine xeno-islets.
Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Animais Geneticamente Modificados , Glicemia , Xenoenxertos , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos NOD , Proteína Estafilocócica A , Suínos , Transplante Heterólogo/métodosRESUMO
The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic-erythroid and granulocytic-monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic-erythroid versus granulocytic-monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.
Assuntos
Diferenciação Celular , Linhagem da Célula , Fator de Transcrição GATA1/metabolismo , Células Mieloides/citologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Eritrócitos/citologia , Retroalimentação Fisiológica , Feminino , Genes Reporter , Granulócitos/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Masculino , Megacariócitos/citologia , Camundongos , Modelos Biológicos , Monócitos/citologia , Reprodutibilidade dos Testes , Análise de Célula Única , Processos EstocásticosRESUMO
Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of ß-cells. Pancreatic ß-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential; understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature ß-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs. We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger ß-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for ß-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional ß-cell heterogeneity and induce ß-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional ß-cell mass in diabetic patients.
Assuntos
Ilhotas Pancreáticas/citologia , Animais , Biomarcadores/análise , Diferenciação Celular , Linhagem da Célula/genética , Polaridade Celular , Proliferação de Células , Humanos , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Via de Sinalização WntRESUMO
Mutations in Hes1, a target gene of the Notch signalling pathway, lead to ectopic pancreas by a poorly described mechanism. Here, we use genetic inactivation of Hes1 combined with lineage tracing and live imaging to reveal an endodermal requirement for Hes1, and show that ectopic pancreas tissue is derived from the dorsal pancreas primordium. RNA-seq analysis of sorted E10.5 Hes1+/+ and Hes1-/- Pdx1-GFP+ cells suggested that upregulation of endocrine lineage genes in Hes1-/- embryos was the major defect and, accordingly, early pancreas morphogenesis was normalized, and the ectopic pancreas phenotype suppressed, in Hes1-/-Neurog3-/- embryos. In Mib1 mutants, we found a near total depletion of dorsal progenitors, which was replaced by an anterior Gcg+ extension. Together, our results demonstrate that aberrant morphogenesis is the cause of ectopic pancreas and that a part of the endocrine differentiation program is mechanistically involved in the dysgenesis. Our results suggest that the ratio of endocrine lineage to progenitor cells is important for morphogenesis and that a strong endocrinogenic phenotype without complete progenitor depletion, as seen in Hes1 mutants, provokes an extreme dysgenesis that causes ectopic pancreas.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Coristoma/genética , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Pâncreas/anormalidades , Pâncreas/embriologia , Fatores de Transcrição HES-1/genética , Animais , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases/genéticaRESUMO
The oviduct/fallopian tube is a tube-like structure that extends from the uterus to the ovary. It is an essential reproductive organ that provides an environment for internal fertilization and preimplantation development. However, our knowledge of its regional and cellular heterogeneity is still limited. Here, we examined the anatomical complexity of mouse oviducts using modern imaging techniques and fluorescence reporter lines. We found that there are consistent coiling patterns and turning points in the coiled mouse oviduct that serve as reliable landmarks for luminal morphological regionalities. We also found previously unrecognized anatomical structures in the isthmus and uterotubal junction, which likely play roles in reproduction. Furthermore, we demarcated the ampulla-isthmus junction as a distinct region. Taken together, the oviduct mucosal epithelium has highly diverse structures with distinct epithelial cell populations, reflecting its complex functions in reproduction.
Assuntos
Desenvolvimento Embrionário , Oviductos/anatomia & histologia , Reprodução , Animais , Feminino , Camundongos , Oviductos/citologiaRESUMO
Pioneer transcription factors (PTF) can recognize their binding sites on nucleosomal DNA and trigger chromatin opening for recruitment of other non-pioneer transcription factors. However, critical properties of PTFs are still poorly understood, such as how these transcription factors selectively recognize cell type-specific binding sites and under which conditions they can initiate chromatin remodelling. Here we show that early endoderm binding sites of the paradigm PTF Foxa2 are epigenetically primed by low levels of active chromatin modifications in embryonic stem cells (ESC). Priming of these binding sites is supported by preferential recruitment of Foxa2 to endoderm binding sites compared to lineage-inappropriate binding sites, when ectopically expressed in ESCs. We further show that binding of Foxa2 is required for chromatin opening during endoderm differentiation. However, increased chromatin accessibility was only detected on binding sites which are synergistically bound with other endoderm transcription factors. Thus, our data suggest that binding site selection of PTFs is directed by the chromatin environment and that chromatin opening requires collaboration of PTFs with additional transcription factors.
Assuntos
Cromatina/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina/genética , Endoderma/citologia , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator 3-beta Nuclear de Hepatócito/genética , Código das Histonas , Histonas/metabolismo , Camundongos , Camundongos Knockout , Modelos Genéticos , Células-Tronco Embrionárias Murinas/citologia , Transdução de SinaisRESUMO
Nkx6-1 is a member of the Nkx family of homeodomain transcription factors (TFs) that regulates motor neuron development, neuron specification and pancreatic endocrine and ß-cell differentiation. To facilitate the isolation and tracking of Nkx6-1-expressing cells, we have generated a novel Nkx6-1 Venus fusion (Nkx6-1-VF) reporter allele. The Nkx6-1-VF knock-in reporter is regulated by endogenous cis-regulatory elements of Nkx6-1 and the fluorescent protein fusion does not interfere with the TF function, as homozygous mice are viable and fertile. The nuclear localization of Nkx6-1-VF protein reflects the endogenous Nkx6-1 protein distribution. During embryonic pancreas development, the reporter protein marks the pancreatic ductal progenitors and the endocrine lineage, but is absent in the exocrine compartment. As expected, the levels of Nkx6-1-VF reporter are upregulated upon ß-cell differentiation during the major wave of endocrinogenesis. In the adult islets of Langerhans, the reporter protein is exclusively found in insulin-secreting ß-cells. Importantly, the Venus reporter activities allow successful tracking of ß-cells in live-cell imaging and their specific isolation by flow sorting. In summary, the generation of the Nkx6-1-VF reporter line reflects the expression pattern and dynamics of the endogenous protein and thus provides a unique tool to study the spatio-temporal expression pattern of this TF during organ development and enables isolation and tracking of Nkx6-1-expressing cells such as pancreatic ß-cells, but also neurons and motor neurons in health and disease.
Assuntos
Técnicas Citológicas , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/citologia , Pâncreas/metabolismo , Alelos , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Perfilação da Expressão Gênica , Genes Reporter , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/embriologia , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Fatores de Transcrição/metabolismoRESUMO
Synaptotagmin-13 (Syt13) is an atypical member of the vesicle trafficking synaptotagmin protein family. The expression pattern and the biological function of this Ca2+-independent protein are not well resolved. Here, we have generated a novel Syt13-Venus fusion (Syt13-VF) fluorescence reporter allele to track and isolate tissues and cells expressing Syt13 protein. The reporter allele is regulated by endogenous cis-regulatory elements of Syt13 and the fusion protein follows an identical expression pattern of the endogenous Syt13 protein. The homozygous reporter mice are viable and fertile. We identify the expression of the Syt13-VF reporter in different regions of the brain with high expression in tyrosine hydroxylase (TH)-expressing and oxytocin-producing neuroendocrine cells. Moreover, Syt13-VF is highly restricted to all enteroendocrine cells in the adult intestine that can be traced in live imaging. Finally, Syt13-VF protein is expressed in the pancreatic endocrine lineage, allowing their specific isolation by flow sorting. These findings demonstrate high expression levels of Syt13 in the endocrine lineages in three major organs harboring these secretory cells. Collectively, the Syt13-VF reporter mouse line provides a unique and reliable tool to dissect the spatio-temporal expression pattern of Syt13 and enables isolation of Syt13-expressing cells that will aid in deciphering the molecular functions of this protein in the neuroendocrine system.