Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 57(6): 1728-1740, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36208095

RESUMO

BACKGROUND: Research suggests that treatment of multiple brain metastases (BMs) with stereotactic radiosurgery shows improvement when metastases are detected early, providing a case for BM detection capabilities on small lesions. PURPOSE: To demonstrate automatic detection of BM on three MRI datasets using a deep learning-based approach. To improve the performance of the network is iteratively co-trained with datasets from different domains. A systematic approach is proposed to prevent catastrophic forgetting during co-training. STUDY TYPE: Retrospective. POPULATION: A total of 156 patients (105 ground truth and 51 pseudo labels) with 1502 BM (BrainMetShare); 121 patients with 722 BM (local); 400 patients with 447 primary gliomas (BrATS). Training/pseudo labels/validation data were distributed 84/51/21 (BrainMetShare). Training/validation data were split: 121/23 (local) and 375/25 (BrATS). FIELD STRENGTH/SEQUENCE: A 5 T and 3 T/T1 spin-echo postcontrast (T1-gradient echo) (BrainMetShare), 3 T/T1 magnetization prepared rapid acquisition gradient echo postcontrast (T1-MPRAGE) (local), 0.5 T, 1 T, and 1.16 T/T1-weighted-fluid-attenuated inversion recovery (T1-FLAIR) (BrATS). ASSESSMENT: The ground truth was manually segmented by two (BrainMetShare) and four (BrATS) radiologists and manually annotated by one (local) radiologist. Confidence and volume based domain adaptation (CAVEAT) method of co-training the three datasets on a 3D nonlocal convolutional neural network (CNN) architecture was implemented to detect BM. STATISTICAL TESTS: The performance was evaluated using sensitivity and false positive rates per patient (FP/patient) and free receiver operating characteristic (FROC) analysis at seven predefined (1/8, 1/4, 1/2, 1, 2, 4, and 8) FPs per scan. RESULTS: The sensitivity and FP/patient from a held-out set registered 0.811 at 2.952 FP/patient (BrainMetShare), 0.74 at 3.130 (local), and 0.723 at 2.240 (BrATS) using the CAVEAT approach with lesions as small as 1 mm being detected. DATA CONCLUSION: Improved sensitivities at lower FP can be achieved by co-training datasets via the CAVEAT paradigm to address the problem of data sparsity. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/patologia , Redes Neurais de Computação
2.
Comput Biol Med ; 136: 104690, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34352452

RESUMO

Convolutional neural networks (CNNs) have been used quite successfully for semantic segmentation of brain tumors. However, current CNNs and attention mechanisms are stochastic in nature and neglect the morphological indicators used by radiologists to manually annotate regions of interest. In this paper, we introduce a channel and spatial wise asymmetric attention (CASPIAN) by leveraging the inherent structure of tumors to detect regions of saliency. To demonstrate the efficacy of our proposed layer, we integrate this into a well-established convolutional neural network (CNN) architecture to achieve higher Dice scores, with less GPU resources. Also, we investigate the inclusion of auxiliary multiscale and multiplanar attention branches to increase the spatial context crucial in semantic segmentation tasks. The resulting architecture is the new CASPIANET++, which achieves Dice Scores of 91.19%, 87.6% and 81.03% for whole tumor, tumor core and enhancing tumor respectively. Furthermore, driven by the scarcity of brain tumor data, we investigate the Noisy Student method for segmentation tasks. Our new Noisy Student Curriculum Learning paradigm, which infuses noise incrementally to increase the complexity of the training images exposed to the network, further boosts the enhancing tumor region to 81.53%. Additional validation performed on the BraTS2020 data shows that the Noisy Student Curriculum Learning method works well without any additional training or finetuning.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Neoplasias Encefálicas/diagnóstico por imagem , Currículo , Humanos , Redes Neurais de Computação , Estudantes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa