Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(13): 6010-6017, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387593

RESUMO

Fabrication of chiral assemblies of plasmonic nanoparticles is a highly attractive and challenging task, with promising applications in light emission, detection, and sensing. So far, primarily organic chiral templates have been used for chirality inscription. Despite recent progress in using chiral ionic liquids in synthesis, the use of organic templates significantly limits the variety of nanoparticle preparation techniques. Here, we demonstrate the utilization of seemingly achiral inorganic nanotubes as templates for the chiral assembly of nanoparticles. We show that both metallic and dielectric nanoparticles can be attached to scroll-like chiral edges propagating on the surfaces of WS2 nanotubes. Such assembly can be performed at temperatures as high as 550 °C. This large temperature range significantly widens the portfolio of nanoparticle fabrication techniques, allowing us to demonstrate a variety of chiral nanoparticle assemblies, ranging from metals (Au, Ga), semiconductors (Ge), and compound semiconductors (GaAs) to oxides (WO3).

2.
Opt Express ; 31(26): 43048-43056, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178407

RESUMO

Structural color filters use nano-sized elements to selectively transmit incident light, offering a scalable, economical, and environmentally friendly alternative to traditional pigment- and dye-based color filters. However, their structural nature makes their optical response prone to spectral shifts whenever the angle of incidence varies. We address this issue by introducing a conformal VO2 layer onto bare aluminum structural color filters. The insulator-metal transition of VO2 compensated the spectral shift of the filter's transmission at a 15° tilt with 80% efficiency. Unlike solutions that require adjustment of the filter's geometry, this method is versatile and suitable also for existing structural filters. Our findings also establish tunable materials in general as a possible solution for angle-dependent spectral shifts.

3.
Nano Lett ; 21(17): 7244-7251, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433259

RESUMO

The key information about any nanoscale system relates to the orientations and conformations of its parts. Unfortunately, these details are often hidden below the diffraction limit, and elaborate techniques must be used to optically probe them. Here we present imaging of the 3D rotation motion of metal nanorods, restoring the distinct nanorod orientations in the full extent of azimuthal and polar angles. The nanorods imprint their 3D orientation onto the geometric phase and space-variant polarization of the light they scatter. We manipulate the light angular momentum and generate optical vortices that create self-interference images providing the nanorods' angles via digital processing. After calibration by scanning electron microscopy, we demonstrated time-resolved 3D orientation imaging of sub-100 nm nanorods under Brownian motion (frame rate up to 500 fps). We also succeeded in imaging nanorods as nanoprobes in live-cell imaging and reconstructed their 3D rotational movement during interaction with the cell membrane (100 fps).


Assuntos
Ouro , Nanotubos , Movimento (Física)
4.
Nano Lett ; 19(2): 1242-1250, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30602118

RESUMO

Optical metasurfaces have emerged as a new generation of building blocks for multifunctional optics. Design and realization of metasurface elements place ever-increasing demands on accurate assessment of phase alterations introduced by complex nanoantenna arrays, a process referred to as quantitative phase imaging. Despite considerable effort, the widefield (nonscanning) phase imaging that would approach resolution limits of optical microscopy and indicate the response of a single nanoantenna still remains a challenge. Here, we report on a new strategy in incoherent holographic imaging of metasurfaces, in which unprecedented spatial resolution and light sensitivity are achieved by taking full advantage of the polarization selective control of light through the geometric (Pancharatnam-Berry) phase. The measurement is carried out in an inherently stable common-path setup composed of a standard optical microscope and an add-on imaging module. Phase information is acquired from the mutual coherence function attainable in records created in broadband spatially incoherent light by the self-interference of scattered and leakage light coming from the metasurface. In calibration measurements, the phase was mapped with the precision and spatial background noise better than 0.01 and 0.05 rad, respectively. The imaging excels at the high spatial resolution that was demonstrated experimentally by the precise amplitude and phase restoration of vortex metalenses and a metasurface grating with 833 lines/mm. Thanks to superior light sensitivity of the method, we demonstrated for the first time to our knowledge the widefield measurement of the phase altered by a single nanoantenna while maintaining the precision well below 0.15 rad.

5.
Opt Express ; 25(14): 16560-16573, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789159

RESUMO

Scanning near-field optical microscopy (SNOM) in combination with interference structures is a powerful tool for imaging and analysis of surface plasmon polaritons (SPPs). However, the correct interpretation of SNOM images requires profound understanding of principles behind their formation. To study fundamental principles of SNOM imaging in detail, we performed spectroscopic measurements by an aperture-type SNOM setup equipped with a supercontinuum laser and a polarizer, which gave us all the degrees of freedom necessary for our investigation. The series of wavelength- and polarization-resolved measurements, together with results of numerical simulations, then allowed us to identify the role of individual near-field components in formation of SNOM images, and to show that the out-of-plane component generally dominates within a broad range of parameters explored in our study. Our results challenge the widespread notion that this component does not couple to the aperture-type SNOM probe and indicate that the issue of SNOM probe sensitivity towards the in-plane and out-of-plane near-field components - one of the most challenging tasks of near field interference SNOM measurements - is not yet fully resolved.

6.
Nanoscale ; 10(45): 21363-21368, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427021

RESUMO

The knowledge of the phase distribution of the near electromagnetic field has become very important for many applications. However, its experimental observation is still technologically a very demanding task. In this work, we propose a novel method for the measurement of the phase distribution of the near electric field based on the principles of phase-shifting digital holography. In contrast to previous methods the holographic interference occurs already in the near field and the phase distribution can be determined purely from the scanning near-field optical microscopy measurements without the need for additional far-field interferometric methods. This opens a way towards on-chip phase imaging. We demonstrate the capabilities of the proposed method by reconstruction of the phase difference between interfering surface plasmon waves and by imaging the phase of a single surface plasmon wave. We also demonstrate a selectivity of the method towards individual components of the field.

7.
Light Sci Appl ; 6(5): e16217, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30167245

RESUMO

Lanthanide-doped upconversion nanocrystals (UCNCs) have recently become an attractive nonlinear fluorescence material for use in bioimaging because of their tunable spectral characteristics and exceptional photostability. Plasmonic materials are often introduced into the vicinity of UCNCs to increase their emission intensity by means of enlarging the absorption cross-section and accelerating the radiative decay rate. Moreover, plasmonic nanostructures (e.g., gold nanorods, GNRs) can also influence the polarization state of the UC fluorescence-an effect that is of fundamental importance for fluorescence polarization-based imaging methods yet has not been discussed previously. To study this effect, we synthesized GNR@SiO2@CaF2:Yb3+,Er3+ hybrid core-shell-satellite nanostructures with precise control over the thickness of the SiO2 shell. We evaluated the shell thickness-dependent plasmonic enhancement of the emission intensity in ensemble and studied the plasmonic modulation of the emission polarization at the single-particle level. The hybrid plasmonic UC nanostructures with an optimal shell thickness exhibit an improved bioimaging performance compared with bare UCNCs, and we observed a polarized nature of the light at both UC emission bands, which stems from the relationship between the excitation polarization and GNR orientation. We used electrodynamic simulations combined with Förster resonance energy transfer theory to fully explain the observed effect. Our results provide extensive insights into how the coherent interaction between the emission dipoles of UCNCs and the plasmonic dipoles of the GNR determines the emission polarization state in various situations and thus open the way to the accurate control of the UC emission anisotropy for a wide range of bioimaging and biosensing applications.

8.
ACS Nano ; 6(11): 10098-106, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23181715

RESUMO

Colloidal gold nanoparticles represent technological building blocks which are easy to fabricate while keeping full control of their shape and dimensions. Here, we report on a simple two-step maskless process to assemble gold nanoparticles from a water colloidal solution at specific sites of a silicon surface. First, the silicon substrate covered by native oxide is exposed to a charged particle beam (ions or electrons) and then immersed in a HF-modified solution of colloidal nanoparticles. The irradiation of the native oxide layer by a low-fluence charged particle beam causes changes in the type of surface-terminating groups, while the large fluences induce even more profound modification of surface composition. Hence, by a proper selection of the initial substrate termination, solution pH, and beam fluence, either positive or negative deposition of the colloidal nanoparticles can be achieved.


Assuntos
Coloides/química , Cristalização/métodos , Ouro/química , Íons Pesados , Nanopartículas Metálicas/química , Silício/química , Coloides/efeitos da radiação , Ouro/efeitos da radiação , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Aceleradores de Partículas , Tamanho da Partícula , Silício/efeitos da radiação , Propriedades de Superfície/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa