Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Endocrinol ; 19(5): 1373-82, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15677711

RESUMO

Glucagon-like peptide 1 (GLP-1) is a physiological stimulus of pancreatic beta-cell function. This enteroendocrine hormone is produced by intestinal L cells, and is delivered via the bloodstream to GLP-1 receptors (GLP-1Rs) on pancreatic beta-cells. In addition, there is evidence that beta-cell GLP-1Rs maintain sustained basal activity even in the absence of intestinal peptide, an observation that has raised the question whether these receptors have some degree of ligand-independent function. Here, we provide an alternative explanation for basal receptor activity based on our finding that biologically relevant amounts of fully processed GLP-1 are locally generated by insulinoma cell lines, as well as by alpha-cells of isolated rat islets in primary culture. Presence of GLP-1 was established by immunocytochemistry, as well as by selective ELISAs and bioassays of cell supernatants. A GLP-1R antagonist significantly reduced insulin secretion/production in beta-TC-6 insulinoma cells and isolated rat islets, suggesting a functionally important loop between locally produced GLP-1 and its cognate receptor. Treatment with this antagonist also inhibited the growth of beta-TC-6 cells. These observations provide novel insight into the function of insulin-producing cell lines and native beta-cells during in vitro culture, and they support the idea that locally produced GLP-1 may play a role in intra-islet regulation.


Assuntos
Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Fragmentos de Peptídeos/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Glucagon/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Masculino , Radioimunoensaio , Ratos , Ratos Sprague-Dawley
2.
Am J Physiol Gastrointest Liver Physiol ; 289(4): G686-95, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15976386

RESUMO

Pancreatic acini secrete digestive enzymes in response to a variety of secretagogues including CCK and agonists acting via proteinase-activated receptor-2 (PAR2). We employed the CCK analog caerulein and the PAR2-activating peptide SLIGRL-NH(2) to compare and contrast Ca(2+) changes and amylase secretion triggered by CCK receptor and PAR2 stimulation. We found that secretion stimulated by both agonists is dependent on a rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) and that this rise in [Ca(2+)](i) reflects both the release of Ca(2+) from intracellular stores and accelerated Ca(2+) influx. Both agonists, at low concentrations, elicit oscillatory [Ca(2+)](i) changes, and both trigger a peak plateau [Ca(2+)](i) change at high concentrations. Although the two agonists elicit similar rates of amylase secretion, the rise in [Ca(2+)](i) elicited by caerulein is greater than that elicited by SLIGRL-NH(2). In Ca(2+)-free medium, the rise in [Ca(2+)](i) elicited by SLIGRL-NH(2) is prevented by the prior addition of a supramaximally stimulating concentration of caerulein, but the reverse is not true; the rise elicited by caerulein is neither prevented nor reduced by prior addition of SLIGRL-NH(2). Both the oscillatory and the peak plateau [Ca(2+)](i) changes that follow PAR2 stimulation are prevented by the phospholipase C (PLC) inhibitor U73122, but U73122 prevents only the oscillatory [Ca(2+)](i) changes triggered by caerulein. We conclude that 1) both PAR2 and CCK stimulation trigger amylase secretion that is dependent on a rise in [Ca(2+)](i) and that [Ca(2+)](i) rise reflects release of calcium from intracellular stores as well as accelerated influx of extracellular calcium; 2) PLC mediates both the oscillatory and the peak plateau rise in [Ca(2+)](i) elicited by PAR2 but only the oscillatory rise in [Ca(2+)](i) elicited by CCK stimulation; and 3) the rate of amylase secretion elicited by agonists acting via different types of receptors may not correlate with the magnitude of the [Ca(2+)](i) rise triggered by those different types of secretagogue.


Assuntos
Amilases/metabolismo , Cálcio/fisiologia , Colecistocinina/fisiologia , Pâncreas/metabolismo , Receptor PAR-2/fisiologia , Animais , Ceruletídeo/farmacologia , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos/farmacologia , Pâncreas/citologia , Pâncreas/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Pirrolidinonas/farmacologia , Receptores da Colecistocinina/efeitos dos fármacos , Fosfolipases Tipo C/antagonistas & inibidores
3.
Am J Physiol Gastrointest Liver Physiol ; 288(2): G388-95, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15458925

RESUMO

Protease-activated receptor-2 (PAR-2) is a widely expressed tethered ligand receptor that can be activated by trypsin and other trypsin-like serine proteases. In the exocrine pancreas, PAR-2 activation modulates acinar cell secretion of digestive enzymes and duct cell ion channel function. During acute pancreatitis, digestive enzyme zymogens, including trypsinogen, are activated within the pancreas. We hypothesized that trypsin, acting via PAR-2, might regulate the severity of that disease, and to test this hypothesis, we examined the effect of either genetically deleting or pharmacologically activating PAR-2 on the severity of secretagogue-induced experimental pancreatitis. We found that experimental acute pancreatitis is more severe in PAR-2(-/-) than in wild-type mice and that in vivo activation of PAR-2, achieved by parenteral administration of the PAR-2-activating peptide SLIGRL-NH2, reduces the severity of pancreatitis. In the pancreas during the early stages of pancreatitis, the MAPK ERK1/2 is activated and translocated to the nucleus, but nuclear translocation is reduced by activation of PAR-2. Our findings indicate that PAR-2 exerts a protective effect on pancreatitis and that activation of PAR-2 ameliorates pancreatitis, possibly by inhibiting ERK1/2 translocation to the nucleus. Our observations suggest that PAR-2 activation may be of therapeutic value in the treatment and/or prevention of severe clinical pancreatitis, and they lead us to speculate that, from a teleological standpoint, PAR-2 may have evolved in the pancreas as a protective mechanism designed to dampen the injurious effects of intrapancreatic trypsinogen activation.


Assuntos
Pancreatite/fisiopatologia , Receptor PAR-2/fisiologia , Animais , Ceruletídeo , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oligopeptídeos/farmacologia , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Peptídeos/farmacologia , Receptor PAR-2/genética , Receptor PAR-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa