RESUMO
INTRODUCTION: In this study, the relationship between the spinnbarkeit, i.e., the stretchability of saliva, and dental caries was investigated. METHODS: Dentistry students were divided into a group with more than 2 decayed, missed, and filled teeth (DMFT ≥2, n = 30) and caries-free group (DMFT = 0, n = 36). RESULTS: Unstimulated saliva flow rate, pH, and spinnbarkeit were determined. Salivary spinnbarkeit was significantly lower in the caries-prone group compared to the caries-free group (5.4 ± 3.9 mm vs. 13.5 ± 7.6 mm, respectively, p < 0.001). CONCLUSION: This suggests that saliva with high spinnbarkeit protects better against dental caries.
Assuntos
Cárie Dentária , Humanos , Suscetibilidade à Cárie Dentária , Saliva , Assistência Odontológica , Índice CPORESUMO
Yersinia pestis is the causative agent of plague. As adequate antibiotic treatment falls short and currently no effective vaccine is available, alternative therapeutic strategies are needed. In order to contribute to solving this problem we investigated the therapeutic potential of the peptide construct LFchimera against the safer-to-handle Y. pestis simulants Yersinia enterocolitica and Yersinia pseudotuberculosis in vitro. LFchimera is a heterodimeric peptide construct mimicking two antimicrobial domains of bovine lactoferrin, i.e. lactoferrampin and lactoferricin. LFchimera has been shown to be a potent antimicrobial peptide against a variety of bacteria in vitro and in vivo. Also Y. enterocolitica and Y. pseudotuberculosis have been shown to be susceptible for LFchimera in vitro. As Yersiniae spp. adhere to and invade host cells upon infection, we here investigated the effects of LFchimera on these processes. It was found that LFchimera has the capacity to inhibit host-cell invasion by Yersiniae spp. in vitro. This effect appeared to be host-cell mediated, not bacteria-mediated. Furthermore it was found that exposure of human HeLa epithelial cells to both LFchimera and the bacterial strains evoked a pro-inflammatory cytokine release from the cells in vitro.
Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Yersinia/efeitos dos fármacos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Adesão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Relação Estrutura-AtividadeRESUMO
The Scavenger Receptor Cysteine-Rich (SRCR) proteins are an archaic group of proteins characterized by the presence of multiple SRCR domains. They are membrane-bound or secreted proteins, which are generally related to host defense systems in animals. Deleted in Malignant Brain Tumors 1 (DMBT1) is a SRCR protein which is secreted in mucosal fluids and involved in host defense by pathogen binding by its SRCR domains. Genetic polymorphism within DMBT1 leads to DMBT1-alleles giving rise to polypeptides with interindividually different numbers of SRCR domains, ranging from 8 SRCR domains (encoded by 6 kb DMBT1 variant) to 13 SRCR domains (encoded by the 8 kb DMBT1 variant). In the present study, we have investigated whether reduction from 13 to 8 amino-terminal SRCR domains leads to reduction of bacterial binding. The 6 kb variant bound ~20-45% less bacteria compared to the 8 kb variant. These results support the hypothesis that genetic variation in DMBT1 may influence microbial defense.
Assuntos
Mutação em Linhagem Germinativa , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Deleção de Sequência , Aderência Bacteriana/genética , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Humanos , Polimorfismo Genético , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/química , Receptores Depuradores/química , Proteínas Supressoras de TumorRESUMO
Lactoferrin (LF) is an important immune protein in neutrophils and secretory fluids of mammals. Bovine LF (bLF) harbours two antimicrobial stretches, lactoferricin and lactoferampin, situated in close proximity in the N1 domain. To mimic these antimicrobial domain parts a chimeric peptide (LFchimera) has been constructed comprising parts of both stretches (LFcin17-30 and LFampin265-284). To investigate the potency of this construct to combat a set of Gram positive and Gram negative bacteria which are regarded as simulants for biological warfare agents, the effect on bacterial killing, membrane permeability and membrane polarity were determined in comparison to the constituent peptides and the native bLF. Furthermore we aimed to increase the antimicrobial potency of the bLF derived peptides by cationic amino acid substitutions. Overall, the bactericidal activity of the peptides could be related to membrane disturbing effects, i.e. membrane permeabilization and depolarization. Those effects were most prominent for the LFchimera. Arginine residues were found to be crucial for displaying antimicrobial activity, as lysine to arginine substitutions resulted in an increased antimicrobial activity, affecting mostly LFampin265-284 whereas arginine to lysine substitutions resulted in a decreased bactericidal activity, predominantly in case of LFcin17-30.
Assuntos
Antibacterianos/farmacologia , Lactoferrina/síntese química , Lactoferrina/farmacologia , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Substituição de Aminoácidos , Animais , Armas Biológicas , Bovinos , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lactoferrina/química , Testes de Sensibilidade MicrobianaRESUMO
After mucosal damage or gingival inflammation, complement proteins leak into the oral cavity and mix with salivary proteins such as salivary agglutinin (SAG/gp-340/DMBT1). This protein is encoded by the gene Deleted in Malignant Brain Tumors 1 (DMBT1), and it aggregates bacteria, viruses and fungi, and activates the lectin pathway of the complement system. In the lectin pathway, carbohydrate structures on pathogens or altered self cells are recognized. SAG is highly glycosylated, partly on the basis of the donor's blood group status. Whereas secretors express Lewis b, Lewis y, and antigens from the ABO-blood group system on SAG, non-secretors do not. Through mannose-binding lectin (MBL) binding and C4 deposition assays, we aimed to identify the chemical structures on SAG that are responsible for complement activation. The complement-activating properties of SAG were completely abolished by oxidation of its carbohydrate moiety. SAG-mediated activation of complement was also inhibited in the presence of saccharides such as fucose and Lewis b carbohydrates, and also after pretreatment with the fucose-binding lectin, Anguilla anguilla agglutinin. Complement activation was significantly (p<0.01) higher in secretors than in non-secretors. Our results suggest that fucose-rich oligosaccharide sidechains, such as Lewis b antigens, are involved in the activation of complement by SAG.
Assuntos
Aglutininas/imunologia , Ativação do Complemento/imunologia , Saliva/imunologia , Humanos , Imunidade Inata , Lectina de Ligação a Manose/imunologiaRESUMO
A cross-sectional observational study was conducted to evaluate interindividual biochemical variation in unstimulated whole saliva in a population of 268 systemically healthy young students, 18-30 yr of age, with no apparent caries lesions or periodontal disease. Salivary flow rate, protein content, pH, buffering capacity, mucins MUC5B and MUC7, albumin, secretory IgA, cystatin S, lactoferrin, chitinase, amylase, lysozyme, and proteases were measured using ELISAs and enzymatic activity assays. Significant differences were found between male and female subjects. Salivary pH, buffering capacity, protein content, MUC5B, secretory IgA, and chitinase activity were all lower in female subjects compared with male subjects, whereas MUC7 and lysozyme activity were higher in female subjects. There was no significant difference between sexes in salivary flow rate, albumin, cystatin S, amylase, and protease activity. Principal component analysis (PCA) and spectral clustering (SC) were used to assess intervariable relationships within the data set and to identify subgroups. Spectral clustering identified two clusters of participants, which were subsequently described. This study provides a comprehensive overview of the distribution and inter-relations of a set of important salivary biochemical variables in a systemically healthy young adult population, free of apparent caries lesions and periodontal disease. It highlights significant gender differences in salivary biochemistry.
Assuntos
Saliva/química , Adolescente , Adulto , Albuminas/análise , Amilases/análise , Soluções Tampão , Quitinases/análise , Análise por Conglomerados , Estudos Transversais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina A Secretora/análise , Lactoferrina/análise , Masculino , Mucina-5B/análise , Mucinas/análise , Muramidase/análise , Peptídeo Hidrolases/análise , Análise de Componente Principal , Saliva/metabolismo , Saliva/fisiologia , Cistatinas Salivares/análise , Proteínas e Peptídeos Salivares/análise , Taxa Secretória/fisiologia , Fatores Sexuais , Adulto JovemRESUMO
BACKGROUND: Olfactory stimulation with mastic resin, derived from the Pistacia lentiscus tree, demonstrated a bona fide sialagogic effect in healthy volunteers [1]. Its main volatile compound, α-pinene, also showed this effect. The current study aimed to validate the effect of mastic resin volatiles in chronic dry mouth patients with confirmed decreased saliva secretion. METHODS: 41 chronic dry mouth patients with decreased unstimulated saliva secretion (<0.25â¯mL/min) were exposed to mastic resin volatiles as part of the diagnostic routine at the Saliva Clinic of Academic Centre for Dentistry Amsterdam. During their visit, dry-mouth questionnaires were conducted and samples of unstimulated whole saliva, chew-stimulated saliva, acid-stimulated saliva and mastic resin stimulated saliva were collected. Saliva flow rate, spinnbarkeit, pH, ion composition, MUC5B and MUC7 levels in all samples were analyzed. RESULTS: Salivary flow rates increased by all stimuli when compared to the baseline unstimulated saliva (P<0.001). During olfactory mastic resin stimulation, the salivary spinnbarkeit (P<0.001) and sodium concentration (P<0.01) were increased compared to unstimulated saliva. MUC5B and MUC7 levels were increased during olfactory mastic resin stimulation compared to chew-stimulated saliva (P=0.016 and P<0.001, respectively). Spinnbarkeit correlated positively with MUC5B (R=0.399, P=0.002) and MUC7 levels (R=0.375, P=0.004). Results of dry-mouth questionnaires indicated reduced posterior palate dryness shortly after olfactory mastic resin stimulation (P=0.04). CONCLUSIONS: Olfactory mastic resin stimulation increased mucous saliva secretion and reduced posterior palate dryness in a group of chronic dry mouth patients. These findings, validated in patients, underscore mastic resin scent as a beneficial and non-invasive sialagogic treatment for clinical applications.
Assuntos
Resina Mástique , Saliva , Salivação , Xerostomia , Humanos , Feminino , Xerostomia/tratamento farmacológico , Salivação/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Saliva/metabolismo , Saliva/química , Adulto , Doença Crônica , Idoso , OdorantesRESUMO
BACKGROUND: The salivary glycoprotein MUC5B plays a versatile role in maintaining oral health. It contributes to lubrication, pellicle formation, antimicrobial defense, and water retention, and its glycans are an important nutrient for oral bacteria. This review aimed to describe the role of MUC5B in oral health and examine changes in its levels and composition in cases of hyposalivation and xerostomia. HIGHLIGHT: In cases of hyposalivation, the reduction of total salivary MUC5B levels and MUC5B glycosylation patterns due to Sjögren's syndrome (SS) and medication intake appeared insignificantly limited. In patients with SS, xerostomia was related to reduced MUC5B levels at the anterior tongue. In cases of xerostomia, MUC5B glycosylation might be reduced, yet other factors such as total protein concentration, MUC7 levels and glycosylation, and salivary spinnbarkeit are involved. In contrast to SS- and medication-induced hyposalivation, radiotherapy in the head and neck region leads to a bona fide reduction in salivary MUC5B levels. CONCLUSION: Our findings suggest that MUC5B levels are clearly impaired in hyposalivation and xerostomia related to radiotherapy in the head and neck region versus those related to SS and medication intake. A reduction in glycosylation in the case of dry mouth appears associated with MUC5B and MUC7 as well as other factors.
Assuntos
Síndrome de Sjogren , Xerostomia , Humanos , Saúde Bucal , Saliva/metabolismo , Xerostomia/etiologia , Síndrome de Sjogren/complicações , Película Dentária/metabolismo , Mucina-5B/genéticaRESUMO
The plasma membrane glycoprotein receptor CD163 is a member of the scavenger receptor cystein-rich (SRCR) superfamily class B that is highly expressed on resident tissue macrophages in vivo. Previously, the molecule has been shown to act as a receptor for hemoglobin-haptoglobin complexes and to mediate cell-cell interactions between macrophages and developing erythroblasts in erythroblastic islands. Here, we provide evidence for a potential role for CD163 in host defense. In particular, we demonstrate that CD163 can function as a macrophage receptor for bacteria. CD163 was shown to bind both Gram-positive and -negative bacteria, and a previously identified cell-binding motif in the second scavenger domain of CD163 was sufficient to mediate this binding. Expression of CD163 in monocytic cells promoted bacteria-induced proinflammatory cytokine production. Finally, newly generated antagonistic antibodies against CD163 were able to potently inhibit cytokine production elicited by bacteria in freshly isolated human monocytes. These findings identify CD163 as a macrophage receptor for bacteria and suggest that, during bacterial infection, CD163 on resident tissue macrophages acts as an innate immune sensor and inducer of local inflammation.
Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Escherichia coli/imunologia , Imunidade Inata/imunologia , Receptores de Superfície Celular/imunologia , Receptores Depuradores/imunologia , Staphylococcus aureus/imunologia , Streptococcus mutans/imunologia , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/química , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Células Cultivadas , Cricetinae , Citocinas/biossíntese , Citocinas/imunologia , Humanos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismoRESUMO
Salivary agglutinin plays a vital biological role modulating the protective effect in the oral cavity by interacting with a broad range of oral pathogens. Here, we describe the first characterization of the O-linked oligosaccharides of salivary agglutinin identified by negative ion liquid chromatography-mass spectrometry. The dominating structures were neutral or monosialylated core 1 (Galbeta1-3GalNAcalpha1-Ser/Thr) and core 2 (Galbeta1-3(GlcNAcbeta1-6)GalNAcalpha1-Ser/Thr) structures extended by fucosylated oligo-N-acetyllactosamine units. Oligosaccharides detected as [M-H](-) or [M-2H](2)(-) ions ranged from the disaccharide Galbeta1-3GalNAcol up to structures of almost 4000 Da, corresponding to core 1/2 structures with five N-acetyllactosamine units and 11 fucoses. Fucose was found either as terminal or internal blood group H structures in type 1 (Galbeta1-3GlcNAcbeta1-R), type 2 (Galbeta1-4GlcNAcbeta1-R) and type 3 (Galbeta1-3GalNAcalpha1-Ser/Thr) units, where the chains also could be fucosylated on GlcNAc yielding repeated Lewis a/b or Lewis x/y structures. Sialylation was located either at the non-reducing end of the N-acetyllactosamine chains as sialyl-Lewis x or as sialyl-T (NeuAcalpha2-3Galbeta1-3GalNAcalpha1-Ser/Thr) type structures with or without further extension of the C-6 branch of GalNAc with neutral fucosylated N-acetyllactosamine chains. The data indicated that sialylation, fucosylation and type 1 N-acetyllactosamine termination are important regulatory elements for controlling the oligosaccharide chain length. Furthermore, it was shown that these regulatory oligosaccharide elements could be utilized by the pathogen Helicobacter pylori to colonize the oral cavity, reside in dental plaque and serve as a reservoir for reinfection after successful clearance of H. pylori gastric infection.
Assuntos
Acetilglucosamina/química , Aglutininas/química , Helicobacter pylori/metabolismo , Antígenos do Grupo Sanguíneo de Lewis/química , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Oligossacarídeos/química , Saliva/química , Acetilglucosamina/análogos & derivados , Sítios de Ligação , Humanos , Oligossacarídeos/metabolismoRESUMO
Deleted in malignant brain tumors 1 (DMBT1) is a secreted glycoprotein displaying a broad bacterial-binding spectrum. Recent functional and genetic studies linked DMBT1 to the suppression of LPS-induced TLR4-mediated NF-kappaB activation and to the pathogenesis of Crohn's disease. Here, we aimed at unraveling the molecular basis of its function in mucosal protection and of its broad pathogen-binding specificity. We report that DMBT1 directly interacts with dextran sulfate sodium (DSS) and carrageenan, a structurally similar sulfated polysaccharide, which is used as a texturizer and thickener in human dietary products. However, binding of DMBT1 does not reduce the cytotoxic effects of these agents to intestinal epithelial cells in vitro. DSS and carrageenan compete for DMBT1-mediated bacterial aggregation via interaction with its bacterial-recognition motif. Competition and ELISA studies identify poly-sulfated and poly-phosphorylated structures as ligands for this recognition motif, such as heparansulfate, LPS, and lipoteichoic acid. Dose-response studies in Dmbt1(-/-) and Dmbt1(+/+) mice utilizing the DSS-induced colitis model demonstrate a differential response only to low but not to high DSS doses. We propose that DMBT1 functions as pattern-recognition molecule for poly-sulfated and poly-phosphorylated ligands providing a molecular basis for its broad bacterial-binding specificity and its inhibitory effects on LPS-induced TLR4-mediated NF-kappaB activation.
Assuntos
Carragenina/imunologia , Sulfato de Dextrana/imunologia , Receptores de Superfície Celular/imunologia , Bactérias/imunologia , Bactérias/metabolismo , Proteínas de Ligação ao Cálcio , Carragenina/farmacologia , Carragenina/toxicidade , Linhagem Celular , Proteínas de Ligação a DNA , Sulfato de Dextrana/farmacologia , Sulfato de Dextrana/toxicidade , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Ligantes , Fosfatos/imunologia , Fosfatos/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de TumorRESUMO
Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.
Assuntos
Imunidade nas Mucosas/fisiologia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , HIV-1/química , HIV-1/imunologia , HIV-1/metabolismo , Helicobacter pylori/química , Helicobacter pylori/imunologia , Helicobacter pylori/metabolismo , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/imunologia , Vírus da Influenza A/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Streptococcus/química , Streptococcus/imunologia , Streptococcus/metabolismo , Proteínas Supressoras de TumorRESUMO
Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on hyphae growth of C. albicans. Candida albicans hyphae were inoculated in Roswell Park Memorial Institute medium with whole saliva, parotid saliva or buffer mimicking the saliva ion composition, and cultured for 18 h at 37 degrees C under aerobic conditions with 5% CO(2). Whole saliva and parotid saliva induced transition to yeast growth, whereas the culture with buffer remained in the hyphae form. Parotid saliva was fractionated on a reverse-phase C8 column and each fraction was tested for inducing transition to yeast growth. By immunoblotting, the salivary component in the active fraction was identified as statherin, a phosphoprotein of 43 amino acids that has been implicated in remineralization of the teeth. Synthetically made statherin induced transition of hyphae to yeast. By deletion of five amino acids at the negatively charged N-terminal site (DpSpSEE), yeast-inducing activity and binding to C. albicans were increased. In conclusion, statherin induces transition to yeast of C. albicans hyphae and may thus contribute to the oral defense against candidiasis.
Assuntos
Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Saliva/química , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimento , Cromatografia/métodos , Meios de Cultura/química , Humanos , Immunoblotting , Ligação Proteica , Saliva/microbiologia , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/isolamento & purificação , Proteínas e Peptídeos Salivares/metabolismo , VirulênciaRESUMO
Streptococcus mutans SpaP mediates the binding of this cariogenic bacteria to tooth surfaces. It was reported that the SpaP of S. mutans clinical isolates could be classified to 2 genotypes, type A and B. Our aims are to examine spaP genotypes in often-used S. mutans laboratory strains as well as clinical isolates and to explore the relationship between the genotypes of S. mutans strains and their adherence to salivary-agglutinin (SAG). The sequences of SpaP of 11 S. mutans strains were analyzed with alignment tools. Out of these strains, 9 strains were examined for their adherence to SAG-coated surfaces. The SpaP expression on the cell surfaces and in the spent media of 9 strains were examined by a dot-blot assay. Based on the alignment of the variable V region of SpaP, 9 strains were classified as previously-defined type-A and 3 strains type-B. Among type-B strains, the SpaPs of GS5 and HG723 contain a premature stop codon which resulted in loss of adherence and absence of SpaP expression on the cell surfaces. However, clear SpaP expression was observed in the spent media of both strains. The type-B strain UA159 demonstrated low SpaP expression on the cell surface, but it showed similar adherence ability as the type-A strains. In conclusion, the presence of SpaP on the cell surface determines the adherence of S. mutans to SAG. No difference in SAG-mediated adherence could be seen between type A and B strains, probably due to the limited number of type B strain tested.
Assuntos
Adesinas Bacterianas/genética , Aglutininas/genética , Streptococcus mutans/genética , Aglutininas/fisiologia , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Genótipo , Humanos , Mutação , Saliva/químicaRESUMO
BACKGROUND & AIMS: Impaired mucosal defense plays an important role in the pathogenesis of Crohn's disease (CD), one of the main subtypes of inflammatory bowel disease (IBD). Deleted in malignant brain tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein with predominant expression in the intestine and has been proposed to exert possible functions in regenerative processes and pathogen defense. Here, we aimed at analyzing the role of DMBT1 in IBD. METHODS: We studied DMBT1 expression in IBD and normal tissues by quantitative reverse transcription-polymerase chain reaction, immunohistochemistry, and mRNA in situ hybridization. Genetic polymorphisms within DMBT1 were analyzed in an Italian IBD case-control sample. Dmbt1(-/-) mice were generated, characterized, and analyzed for their susceptibility to dextran sulfate sodium-induced colitis. RESULTS: DMBT1 levels correlate with disease activity in inflamed IBD tissues. A highly significant fraction of the patients with IBD displayed up-regulation of DMBT1 specifically in the intestinal epithelial surface cells and Paneth cells. A deletion allele of DMBT1 with a reduced number of scavenger receptor cysteine-rich domain coding exons is associated with an increased risk of CD (P = .00056; odds ratio, 1.75) but not for ulcerative colitis. Dmbt1(-/-) mice display enhanced susceptibility to dextran sulfate sodium-induced colitis and elevated Tnf, Il6, and Nod2 expression levels during inflammation. CONCLUSIONS: DMBT1 may play a role in intestinal mucosal protection and prevention of inflammation. Impaired DMBT1 function may contribute to the pathogenesis of CD.
Assuntos
Doença de Crohn/genética , Doença de Crohn/fisiopatologia , Deleção de Genes , Mucosa Intestinal/fisiopatologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas de Ligação ao Cálcio , Estudos de Casos e Controles , Criança , Doença de Crohn/induzido quimicamente , Proteínas de Ligação a DNA , Sulfato de Dextrana , Suscetibilidade a Doenças , Éxons/genética , Feminino , Humanos , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mucinas/genética , Mucinas/fisiologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , RNA Mensageiro/metabolismo , Fatores de Risco , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor , Regulação para Cima/genéticaRESUMO
OBJECTIVE: Polymorphonuclear neutrophils (PMNs) are the most abundant innate immune cells and are also important effectors in the maintenance of oral health. However, little is known about the effects of saliva on the PMN. We therefore aimed to investigate the effect of saliva on the PMNs' morphology and functioning. DESIGN: Effect of saliva on the membrane integrity of PMNs isolated from blood was evaluated with FACS using Annexin V (apoptosis marker) and propidum iodide (membrane integrity marker). The effect on cell morphology was examined using transmission electron imaging. Binding and phagocytosis of the oral bacterium Fusobacterium nucleatum by PMNs was analysed by FACS. Reactive oxygen species (ROS) production was measured with chemiluminescence. RESULTS: Incubation with saliva for 60â¯min had no detectable effects on the membrane integrity or the morphology of PMNs. In contrast, preincubation of F. nucleatum with saliva inhibited its subsequent interaction with PMNs, resulting in a diminished production of ROS. CONCLUSIONS: Saliva does not impair the function of PMNs. However, interaction of salivary components with F. nucleatum may affect their recognition by PMNs resulting in a diminished functional response.
Assuntos
Neutrófilos/fisiologia , Saliva/metabolismo , Adulto , Apoptose , Aderência Bacteriana , Feminino , Fusobacterium nucleatum/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Fagocitose , Fenótipo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Oral fluid mainly consists of a mixture of glandular salivas. In addition, it is contaminated by some crevicular fluid, containing serum constituents. The contribution of the various salivary glands shows a continuous variation, resulting in wide ranges of concentrations for all constituents of oral fluid. As a consequence, the collection of oral fluid for diagnostic purposes should be standardized. Oral fluid can be used to detect a number of diseases and recent use of illicit drugs. It can also be used to monitor therapeutic drug concentrations. The development of microchips for salivary components offers great possibilities to use oral fluid for point-of-care testing.
Assuntos
Biomarcadores/análise , Biomarcadores/química , Técnicas de Laboratório Clínico , Saliva/química , Saliva/fisiologia , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/fisiologia , Animais , Humanos , Proteínas e Peptídeos Salivares/análiseRESUMO
In addition to saliva, other oral components such as gingival crevicular fluid, epithelial cells, bacteria, breath, and dental plaque have diagnostic potential. For oral diseases such as caries and periodontal disease, visual diagnosis is usually adequate, but objective diagnostic tests with predictive value are desired. Therefore, prediction models like the Cariogram have been developed that also include oral aspects such as saliva secretion, buffering capacity, and Streptococcus mutans counts for the prediction of caries. Correlation studies on salivary components and caries have not been conclusive, but correlation studies on functional aspects, such as saliva-induced bacterial aggregation and caries, look promising. Modern proteomic techniques make it possible to study simultaneously the many salivary components involved in these functions.
Assuntos
Diagnóstico Bucal , Doenças da Boca/diagnóstico , Doenças Dentárias/diagnóstico , Animais , Diagnóstico Bucal/métodos , Diagnóstico Bucal/tendências , Humanos , Doenças da Boca/metabolismo , Doenças da Boca/microbiologia , Saliva/química , Doenças Dentárias/metabolismo , Doenças Dentárias/microbiologiaRESUMO
We previously found that scavenger receptor cysteine-rich gp-340 (glycoprotein-340), isolated from lung or saliva, directly inhibits human IAVs (influenza A viruses). We now show that salivary gp-340 has broad antiviral activity against human, equine and porcine IAV strains. Although lung and salivary gp-340 are identical in protein sequence, salivary gp-340 from one donor had significantly greater antiviral activity against avian-like IAV strains which preferentially bind sialic acids in alpha(2,3) linkage. A greater density of alpha(2,3)-linked sialic acids was present on the salivary gp-340 from this donor as compared with salivary gp-340 from another donor or several preparations of lung gp-340. Hence, the specificity of sialic acid linkages on gp-340 is an important determinant of anti-IAV activity. Gp-340 binds to SP-D (surfactant protein D), and we previously showed that lung gp-340 has co-operative interactions with SP-D in viral neutralization and aggregation assays. We now report that salivary gp-340 can, in some cases, strongly antagonize certain antiviral activities of SP-D. This effect was associated with greater binding of salivary gp-340 to the carbohydrate recognition domain of SP-D as compared with the binding of lung gp-340. These findings may relate to inter-individual variations in innate defence against highly pathogenic IAV and to effects of aspiration of oral contents on SP-D-mediated lung functions.
Assuntos
Antivirais/metabolismo , Pulmão/química , Orthomyxoviridae/efeitos dos fármacos , Proteína D Associada a Surfactante Pulmonar/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Saliva/química , Animais , Antivirais/farmacologia , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Orthomyxoviridae/classificação , Orthomyxoviridae/fisiologia , Ligação Proteica , Especificidade da EspécieRESUMO
A common experience after exercise is the presence of a thick and sticky saliva layer on the oral surfaces, which causes a feeling of a dry mouth. Since the salivary mucin MUC5B is responsible for the visco-elastic behavior of saliva, in the present study we explored the effect of exercise on both the salivary viscosity and the secretion of MUC5B in saliva. Twenty healthy dental students performed an aerobic exercise by cycling for 15 min on cycle-ergometers at a heart rate of 130-140 beats per minute. Saliva was collected at three time points: before exercise, immediately after exercise and after 30 min recovery. Salivary flow rate, viscosity, amylase activity, total protein, carbohydrate and MUC5B concentration were determined. Salivary flow rate, protein and amylase did not change significantly. Immediately after exercise, the salivary viscosity and carbohydrate concentration were significantly higher than at baseline and after 30 min recovery. Immediately after exercise, the MUC5B concentration was significantly higher than after 30 min recovery. It is concluded that the presence of thick saliva after exercise is at least partially due to an increased secretion of MUC5B.