RESUMO
So far, a large variety of polymer molecule architectures have been explored in the electrolyte field. Polymer electrolytes have gathered research efforts as an interesting alternative to conventional liquid electrolytes due to their advantages of low probability of leakage and low volatility of liquid solvent, lightweight, flexibility, inertness, high durability, and thermal stability. In this work, a polymer electrolyte developed from a polyurethane/polyacrylonitrile (PU/PAN) electrospinning fiber membrane was added with different zinc (Zn) salts, namely, Zn(CH3CO2)2, ZnSO4, and Zn(OTf)2. The samples with the Zn salt presented many different properties; especially, the high Zn(OTf)2 sample showed gradually bundle morphology in its structure. Characterization revealed improved properties in contact angle, water uptake, and thermal resistance. Namely, the 15 wt% Zn(OTf)2) sample exhibited an outstandingly high ionic conductivity of 3.671 mS cm-1, which is 10 times higher than that of the neat PU/PAN membrane.
RESUMO
The recent development of separators with high flexibility, high electrolyte uptake, and ionic conductivity for batteries have gained considerable attention. However, studies on composite separators with the aforementioned properties for aqueous electrolytes in Zn-ion batteries are limited. In this research, a polyacrylonitrile (PAN)/bio-based polyurethane (PU)/Ti3C2Tx MXene composite membrane was fabricated using an electrospinning technique. Ti3C2 MXene was embedded in fibers and formed a spindle-like structure. With Ti3C2Tx MXene, the electrolyte uptake and ionic conductivity reached the superior values of 2214% and 3.35 × 10-3 S cm-1, respectively. The composite membrane presented an excellent charge-discharge stability when assembled in a Zn//Zn symmetrical battery. Moreover, the developed separator exhibited a high flexibility and no dimensional and structural changes after heat treatment, which resulted in the high-performance separator for the Zn-ion battery. Overall, the PAN/bio-based PU/Ti3C2Tx MXene composite membrane can be potentially used as a high-performance separator for Zn-ion batteries.
RESUMO
Conventional drug delivery systems often cause side effects and gastric degradation. Novel drug delivery systems must be developed to decrease side effects and increase the efficacy of drug delivery. This research aimed to fabricate hydrogel beads for use as a drug delivery system based on basil seed mucilage (BSM), sodium alginate (SA), and magnetic particles (MPs). The Taguchi method and Grey relational analysis were used for the design and optimization of the hydrogel beads. Three factors, including BSM, SA, and MPs at four levels were designed by L-16 orthogonal arrays. BSM was the main factor influencing bead swelling, drug release rate at pH 7.4, and release of antioxidants at pH 1.2 and 7.4. In addition, SA and MPs mainly affected drug loading and drug release rate in acidic medium, respectively. Grey relational analysis indicated that the composition providing optimal overall properties was 0.2 vol% BSM, 0.8 vol% SA, and 2.25 vol% MPs. Based on the findings of this work, BSM/SA/MPs hydrogel beads have the potential to be used as a pH-sensitive alternative material for drug delivery in colon-specific systems.