RESUMO
Endothelin-1 (ET-1) has been implicated in the pathogenesis of cardiac fibrosis. Stimulation of endothelin receptors (ETR) with ET-1 leads to fibroblast activation and myofibroblast differentiation, which is mainly characterized by an overexpression of α-smooth muscle actin (α-SMA) and collagens. Although ET-1 is a potent profibrotic mediator, the signal transductions and subtype specificity of ETR contributing to cell proliferation, as well as α-SMA and collagen I synthesis in human cardiac fibroblasts are not well clarified. This study aimed to evaluate the subtype specificity and signal transduction of ETR on fibroblast activation and myofibroblast differentiation. Treatment with ET-1 induced fibroblast proliferation, and synthesis of myofibroblast markers, α-SMA, and collagen I through the ETAR subtype. Inhibition of Gαq protein, not Gαi or Gßγ, inhibited these effects of ET-1, indicating the essential role of Gαq protein-mediated ETAR signaling. In addition, ERK1/2 was required for ETAR/Gαq axis-induced proliferative capacity and overexpression of these myofibroblast markers. Antagonism of ETR with ETR antagonists (ERAs), ambrisentan and bosentan, inhibited ET-1-induced cell proliferation and synthesis of α-SMA and collagen I. Furthermore, ambrisentan and bosentan promoted the reversal of myofibroblasts after day 3 of treatment, with loss of proliferative ability and a reduction in α-SMA synthesis, confirming the restorative effects of ERAs. This novel work reports on the ETAR/Gαq/ERK signaling pathway for ET-1 actions and blockade of ETR signaling with ERAs, representing a promising therapeutic strategy for prevention and restoration of ET-1-induced cardiac fibrosis.
Assuntos
Sistema de Sinalização das MAP Quinases , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Endotelina-1/metabolismo , Bosentana/farmacologia , Transdução de Sinais , Fibroblastos/metabolismo , Diferenciação Celular , Proliferação de Células , Colágeno Tipo I/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Colágeno/metabolismo , FibroseRESUMO
Infrapatellar fat pad (IFP)/ synovial fibrosis is closely associated with the clinical symptoms of joint pain and stiffness, which contribute to locomotor restriction in osteoarthritis (OA) patients. Hence, this study was designed to gain insight on whether losartan, a selective angiotensin II type 1 receptor (AT1R) antagonist, has therapeutic benefit to reverse IFP/synovial fibrosis and secondarily to attenuate pain behavior. In male Wistar rats with monoiodoacetic acid (MIA)-induced IFP/synovial fibrosis, a possible role for increased AT1R expression in the pathogenesis of IFP/synovial fibrosis was assessed over an 8-week period. Pain behavior comprised static weight bearing and von Frey paw withdrawal thresholds (PWTs), which were assessed once or twice weekly, respectively. Groups of MIA-rats received oral losartan (30-mg/kg; n = 8 or 100-mg/kg; n = 9) or vehicle (n = 9) for 28-days according to a prevention protocol. Animals were euthanized on day 28 and various tissues (IFP/synovium, cartilage and lumbar dorsal root ganglia (DRGs)) were collected for histological, immunohistochemical and western blot analyses. Administration of once-daily losartan for 28-days dose-dependently attenuated the development of static weight bearing. This was accompanied by reduced IFP/synovial fibrosis and suppression of TGF-ß1 expression. Chronic treatment of MIA-rats with losartan had an anti-fibrotic effect and it attenuated pain behavior in this animal model.
Assuntos
Osteoartrite do Joelho , Osteoartrite , Ratos , Masculino , Animais , Losartan/farmacologia , Losartan/uso terapêutico , Ratos Wistar , Dor/metabolismo , Osteoartrite/metabolismo , Tecido Adiposo/metabolismo , Fibrose , Ácido Iodoacético/toxicidade , Ácido Iodoacético/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/efeitos adversos , Osteoartrite do Joelho/patologiaRESUMO
Obesity has been linked to metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). Obesity causes a decrease in growth hormone (GH) levels and an increase in insulin levels. Long-term GH treatment increased lipolytic activity as opposed to decreasing insulin sensitivity. Nonetheless, it is possible that short-term GH administration had no impact on insulin sensitivity. In this study, the effect of short-term GH administration on liver lipid metabolism and the effector molecules of GH and insulin receptors were investigated in diet-induced obesity (DIO) rats. Recombinant human GH (1 mg/kg) was then administered for 3 days. Livers were collected to determine the hepatic mRNA expression and protein levels involved in lipid metabolism. The expression of GH and insulin receptor effector proteins was investigated. In DIO rats, short-term GH administration significantly reduced hepatic fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) mRNA expression while increasing carnitine palmitoyltransferase 1A (CPT1A) mRNA expression. Short-term GH administration reduced hepatic FAS protein levels and downregulated gene transcription of hepatic fatty acid uptake and lipogenesis, while increasing fatty acid oxidation in DIO rats. DIO rats had lower hepatic JAK2 protein levels but higher IRS-1 levels than control rats due to hyperinsulinemia. Our findings suggest that short-term GH supplementation improves liver lipid metabolism and may slow the progression of NAFLD, where GH acts as the transcriptional regulator of related genes.
RESUMO
Introduction: Non-alcoholic fatty liver disease (NAFLD) is one of the metabolic disorders related to the pathophysiology of type 2 diabetes mellitus (T2DM). Therapeutic strategies are focused on the improvement of energy balance and lifestyle modification. Additionally, the derivative of the bioactive fungal metabolite is of interest to provide health benefits, especially in obese and pre-diabetic conditions. In our screening of anti-diabetic compounds from fungal metabolites and semisynthetic derivatives, a depsidone derivative, namely pyridylnidulin (PN), showed potent glucose uptake-inducing activity. The present study aimed to investigate the liver lipid metabolism and anti-diabetic properties of PN in diet-induced obesity mice. Methods: Male C57BL/6 mice were induced obesity and pre-diabetic conditions by dietary intervention with a high-fat diet (HFD) for 6 weeks. These obese mice were orally administered with PN (40 or 120 mg/kg), metformin (150 mg/kg), or vehicle for 4 weeks. Glucose tolerance, plasma adipocytokines, hepatic gene and protein expressions were assessed after treatment. Results: Improved glucose tolerance and reduced fasting blood glucose levels were found in the PN and metformin-treated mice. Additionally, hepatic triglyceride levels were consistent with the histopathological steatosis score regarding hepatocellular hypertrophy in the PN and metformin groups. The levels of plasma adipocytokines such as tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) were reduced in the PN (120 mg/kg) and metformin-treated mice. In addition, hepatic gene expression involved in lipid metabolism, including lipogenic enzymes was significantly reduced in the PN (120 mg/kg) and metformin-treated mice. The increased protein expression levels of phosphorylated AMP-activated protein kinase (p-AMPK) was also found in PN and metformin-treated mice. Discussion: Considering the increased p-AMPK protein expression levels in PN and metformin-treated mice were revealed as the underlying mechanisms to improve metabolic parameters. These results suggested that PN provided the health benefit to slow the progression of NAFLD and T2DM in obese and pre-diabetic conditions.