Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Catal A Chem ; 425(0): 183-189, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30245578

RESUMO

Although UV-induced TiO2 photocatalysis involves the generation of several reactive oxygen species (ROS), the formation of hydroxyl radicals are generally associated with the degradation of persistent organic contaminants in water. In this study, a variety of radical scavengers were employed to discriminate the roles of different ROS during visible light activated (VLA) photocatalysis using nitrogen and fluorine doped TiO2 (NF-TiO2) in the degradation of the hepatotoxin, microcystin-LR (MC-LR) in water. The addition of hydroxyl radical scavengers, methanol and tert-butyl alcohol to the reaction mixture resulted in negligible inhibition of VLA NF-TiO2 photocatalytic degradation of MCLR at pH 3.0 and only partial inhibition at pH 5.7. While hydroxyl radicals generally play the primary role in UV TiO2 photocatalysis, the minimal influence of MeOH and t-BuOH on the degradation process under these experimental conditions indicates hydroxyl radicals (•OH) do not play the primary role in VLA NF-TiO2 photocatalysis. However, strong inhibition was observed in VLA NF-TiO2 photocatalytic degradation of MC-LR in the presence of superoxide dismutase, benzoquinone and catalase at pH 3.0 and 5.7 indicating O2•- and H2O2 play critical roles in the degradation process. Similar degradation rates were observed in the presence of singlet oxygen scavenger, deuterium oxide, which enhances singlet oxygen mediated processes further suggesting singlet oxygen does not play a key role in the degradation of MCLR in these system. Formic acid and cupric nitrate were added to probe the roles of the valence band holes and conduction band electrons, respectively. Under UV+vis light irradiation, almost complete inhibition of MC-LR removal is observed with NF-TiO2 in the presence of •OH scavengers at pH 5.7. These results demonstrate that solution pH plays a major role in the formation and reactivities of ROS during VLA NF-TiO2 photocatalysis. The adsorption strength of the scavengers and MCLR onto NF-TiO2 as well as the speciation of the ROS as a function of pH need to be carefully considered since they also play a key role in the efficiency of the process. These results indicate the reduction of molecular oxygen by photo-generated electrons rather than hydroxyl radicals produced by oxidative reactions of photo-generated holes play a key role in the of VLA NF-TiO2 photocatalytic degradation of MC-LR.

2.
Membranes (Basel) ; 14(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786946

RESUMO

This study highlights the effectiveness of photocatalytically modified ceramic ultrafiltration (UF) membranes in alleviating two major drawbacks of membrane filtration technologies. These are the generation of a highly concentrated retentate effluent as a waste stream and the gradual degradation of the water flux through the membrane due to the accumulation of organic pollutants on its surface. The development of two types of novel tubular membranes, featuring photocatalytic Mo-BiVO4 inverse opal coatings, demonstrated a negligible impact on water permeance, ensuring consistent filtration and photocatalytic efficiency and suggesting the potential for maintaining membrane integrity and avoiding the formation of highly concentrated retentate effluents. Morphological analysis revealed well-defined coatings with ordered domains and interconnected macropores, confirming successful synthesis of Mo-BiVO4. Raman spectroscopy and optical studies further elucidated the composition and light absorption properties of the coatings, particularly within the visible region, which is vital for photocatalysis driven by vis-light. Evaluation of the tetracycline removal efficiency presented efficient adsorption onto membrane surfaces with enhanced photocatalytic activity observed under both UV and vis-light. Additionally, vis-light irradiation facilitated significant degradation, showcasing the versatility of the membranes. Total Organic Carbon (TOC) analysis corroborated complete solute elimination or photocatalytic degradation without the production of intermediates, highlighting the potential for complete pollutant removal. Overall, these findings emphasize the promising applications of Mo-BiVO4 photocatalytic membranes in sustainable water treatment and wastewater remediation processes, laying the groundwork for further optimization and scalability in practical water treatment systems.

3.
Nanoscale ; 16(21): 10366-10376, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38739078

RESUMO

Plasmonic photocatalysis based on metal-semiconductor heterojunctions is considered a key strategy to evade the inherent limitations of poor light harvesting and charge separation of semiconductor photocatalysts. It can be profitably combined with three-dimensional photonic crystals (PCs) that offer an ideal scaffold for loading plasmonic nanoparticles and a unique architecture to intensify photon capture. In this work, Mo-doped BiVO4 inverse opals were applied as visible light-responsive photonic hosts of Ag and/or Au plasmonic nanoparticles in order to exploit the synergy of plasmonic and photonic amplification effects with interfacial charge transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical contaminants under visible light. Photoelectrochemical evaluation indicated a major contribution from hot spot-assisted local field enhancement, most pronounced for Ag/Mo-BiVO4 PCs due to the spectral overlap of the localized surface plasmon resonance with the electronic absorption and blue-edge slow photon region of Mo-BiVO4 PCs, in contrast to weak plasmonic sensitization effects for the Au-modified PCs. The diverse band alignment at the metal-semiconductor interfaces resulted in the enhanced photoelectrocatalytic degradation of tetracycline broad spectrum antibiotic by Ag/Mo-BiVO4 and the refractory ibuprofen drug by (Ag,Au)/Mo-BiVO4, attributed to the enhanced charge separation by electron transfer toward Ag nanoparticles. Combination of visible light activated semiconductor PCs and plasmonic nanoparticles with suitable band alignment and photonic band gap may provide a versatile approach for the rational design of efficient plasmonic-photonic photoeletrocatalysts.

4.
Materials (Basel) ; 16(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241360

RESUMO

Early diagnosis and monitoring are essential for the effective treatment and survival of patients with different types of malignancy. To this end, the accurate and sensitive determination of substances in human biological fluids related to cancer diagnosis and/or prognosis, i.e., cancer biomarkers, is of ultimate importance. Advancements in the field of immunodetection and nanomaterials have enabled the application of new transduction approaches for the sensitive detection of single or multiple cancer biomarkers in biological fluids. Immunosensors based on surface-enhanced Raman spectroscopy (SERS) are examples where the special properties of nanostructured materials and immunoreagents are combined to develop analytical tools that hold promise for point-of-care applications. In this frame, the subject of this review article is to present the advancements made so far regarding the immunochemical determination of cancer biomarkers by SERS. Thus, after a short introduction about the principles of both immunoassays and SERS, an extended presentation of up-to-date works regarding both single and multi-analyte determination of cancer biomarkers is presented. Finally, future perspectives on the field of SERS immunosensors for cancer markers detection are briefly discussed.

5.
Biosensors (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832039

RESUMO

Glutathione and malondialdehyde are two compounds commonly used to evaluate the oxidative stress status of an organism. Although their determination is usually performed in blood serum, saliva is gaining ground as the biological fluid of choice for oxidative stress determination at the point of need. For this purpose, surface-enhanced Raman spectroscopy (SERS), which is a highly sensitive method for the detection of biomolecules, could offer additional advantages regarding the analysis of biological fluids at the point of need. In this work, silicon nanowires decorated with silver nanoparticles made by metal-assisted chemical etching were evaluated as substrates for the SERS determination of glutathione and malondialdehyde in water and saliva. In particular, glutathione was determined by monitoring the reduction in the Raman signal obtained from substrates modified with crystal violet upon incubation with aqueous glutathione solutions. On the other hand, malondialdehyde was detected after a reaction with thiobarbituric acid to produce a derivative with a strong Raman signal. The detection limits achieved after optimization of several assay parameters were 50 and 3.2 nM for aqueous solutions of glutathione and malondialdehyde, respectively. In artificial saliva, however, the detection limits were 2.0 and 0.32 µM for glutathione and malondialdehyde, respectively, which are, nonetheless, adequate for the determination of these two markers in saliva.


Assuntos
Nanopartículas Metálicas , Nanofios , Silício/química , Nanopartículas Metálicas/química , Prata/química , Saliva/química , Nanofios/química , Análise Espectral Raman/métodos , Água/química , Glutationa/análise
6.
Nanomaterials (Basel) ; 13(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132997

RESUMO

Nanostructured noble metal surfaces enhance the photoluminescence emitted by fluorescent molecules, permitting the development of highly sensitive fluorescence immunoassays. To this end, surfaces with silicon nanowires decorated with silver nanoparticles in the form of dendrites or aggregates were evaluated as substrates for the immunochemical detection of two ovarian cancer indicators, carbohydrate antigen 125 (CA125) and human epididymis protein 4 (HE4). The substrates were prepared by metal-enhanced chemical etching of silicon wafers to create, in one step, silicon nanowires and silver nanoparticles on top of them. For both analytes, non-competitive immunoassays were developed using pairs of highly specific monoclonal antibodies, one for analyte capture on the substrate and the other for detection. In order to facilitate the identification of the immunocomplexes through a reaction with streptavidin labeled with Rhodamine Red-X, the detection antibodies were biotinylated. An in-house-developed optical set-up was used for photoluminescence signal measurements after assay completion. The detection limits achieved were 2.5 U/mL and 3.12 pM for CA125 and HE4, respectively, with linear dynamic ranges extending up to 500 U/mL for CA125 and up to 500 pM for HE4, covering the concentration ranges of both healthy and ovarian cancer patients. Thus, the proposed method could be implemented for the early diagnosis and/or prognosis and monitoring of ovarian cancer.

7.
ACS Omega ; 8(37): 33639-33650, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744818

RESUMO

Heterostructured photocatalytic materials in the form of photonic crystals have been attracting attention for their unique light harvesting ability that can be ideally combined with judicious compositional modifications toward the development of visible light-activated (VLA) photonic catalysts, though practical environmental applications, such as the degradation of pharmaceutical emerging contaminants, have been rarely reported. Herein, heterostructured MoS2-TiO2 inverse opal films are introduced as highly active immobilized photocatalysts for the VLA degradation of tetracycline and ciprofloxacin broad-spectrum antibiotics as well as salicylic acid. A single-step co-assembly method was implemented for the challenging incorporation of MoS2 nanosheets into the nanocrystalline inverse opal walls. Compositional tuning and photonic band gap engineering of the MoS2-TiO2 photonic films showed that integration of low amounts of MoS2 nanosheets in the inverse opal framework maintains intact the periodic macropore structure and enhances the available surface area, resulting in efficient VLA antibiotic degradation far beyond the performance of benchmark TiO2 films. The combination of broadband MoS2 visible light absorption and photonic-assisted light trapping together with the enhanced charge separation that enables the generation of reactive oxygen species via firm interfacial coupling between MoS2 nanosheets and TiO2 nanoparticles is concluded as a competent approach for pharmaceutical abatement in water bodies.

8.
Nanotechnology ; 23(29): 294003, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22743554

RESUMO

We have demonstrated heterogeneous photocatalytic degradation of microcystin-LR (MC-LR) by visible light activated carbon doped TiO(2) (C-TiO(2)) nanoparticles, synthesized by a modified sol-gel route based on the self-assembly technique exploiting oleic acid as a pore directing agent and carbon source. The C-TiO(2) nanoparticles crystallize in anatase phase despite the low calcination temperature of 350 °C and exhibit a highly porous structure that can be optimized by tuning the concentration of the oleic acid surfactant. The carbon modified nanomaterials exhibited enhanced absorption in the broad visible light region together with an apparent red shift in the optical absorption edge by 0.5 eV (2.69 eV), compared to the 3.18 eV of reference anatase TiO(2). Carbon species were identified by x-ray photoelectron spectroscopy analysis through the formation of both Ti-C and C-O bonds, indicative of substitution of carbon for oxygen atoms and the formation of carbonates, respectively. Electron paramagnetic resonance spectroscopy revealed the formation of two carbon related paramagnetic centers in C-TiO(2), whose intensity was markedly enhanced under visible light illumination, pointing to the formation of localized states within the anatase band gap, following carbon doping. The photocatalytic activity of C-TiO(2) nanomaterials was evaluated for the degradation of MC-LR at pH 3.0 under visible light (λ > 420 nm) irradiation. The doped materials showed a higher MC-LR degradation rate than reference TiO(2), behavior that is attributed to the incorporation of carbon into the titania lattice.


Assuntos
Toxinas Bacterianas/química , Microcistinas/química , Nanopartículas/química , Titânio/química , Microbiologia da Água , Purificação da Água/métodos , Toxinas Bacterianas/isolamento & purificação , Catálise , Cianobactérias/química , Luz , Toxinas Marinhas , Microcistinas/isolamento & purificação , Nanopartículas/ultraestrutura , Fotólise
9.
Nanomaterials (Basel) ; 11(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34361147

RESUMO

In this study, we developed highly sensitive substrates for Surface-Enhanced-Raman-Scattering (SERS) spectroscopy, consisting of silicon nanowires (SiNWs) decorated by silver nanostructures using single-step Metal Assisted Chemical Etching (MACE). One-step MACE was performed on p-type Si substrates by immersion in AgNO3/HF aqueous solutions resulting in the formation of SiNWs decorated by either silver aggregates or dendrites. Specifically, dendrites were formed during SiNWs' growth in the etchant solution, whereas aggregates were grown after the removal of the dendrites from the SiNWs in HNO3 aqueous solution and subsequent re-immersion of the specimens in a AgNO3/HF aqueous solution by adjusting the growth time to achieve the desired density of silver nanostructures. The dendrites had much larger height than the aggregates. R6G was used as analyte to test the SERS activity of the substrates prepared by the two fabrication processes. The silver aggregates showed a considerably lower limit of detection (LOD) for SERS down to a R6G concentration of 10-13 M, and much better uniformity in terms of detection in comparison with the silver dendritic structures. Enhancement factors in the range 105-1010 were calculated, demonstrating very high SERS sensitivities for analytic applications.

10.
Materials (Basel) ; 14(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885271

RESUMO

Tailoring metal oxide photocatalysts in the form of heterostructured photonic crystals has spurred particular interest as an advanced route to simultaneously improve harnessing of solar light and charge separation relying on the combined effect of light trapping by macroporous periodic structures and compositional materials' modifications. In this work, surface deposition of FeOx nanoclusters on TiO2 photonic crystals is investigated to explore the interplay of slow-photon amplification, visible light absorption, and charge separation in FeOx-TiO2 photocatalytic films. Photonic bandgap engineered TiO2 inverse opals deposited by the convective evaporation-induced co-assembly method were surface modified by successive chemisorption-calcination cycles using Fe(III) acetylacetonate, which allowed the controlled variation of FeOx loading on the photonic films. Low amounts of FeOx nanoclusters on the TiO2 inverse opals resulted in diameter-selective improvements of photocatalytic performance on salicylic acid degradation and photocurrent density under visible light, surpassing similarly modified P25 films. The observed enhancement was related to the combination of optimal light trapping and charge separation induced by the FeOx-TiO2 interfacial coupling. However, an increase of the FeOx loading resulted in severe performance deterioration, particularly prominent under UV-Vis light, attributed to persistent surface recombination via diverse defect d-states.

11.
Materials (Basel) ; 13(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054119

RESUMO

Semiconductor photocatalysts have attracted a great amount of multidiscipline research due to their distinctive potential for solar-to-chemical-energy conversion applications, ranging from water and air purification to hydrogen and chemical fuel production. This unique diversity of photoinduced applications has spurred major research efforts on the rational design and development of photocatalytic materials with tailored structural, morphological, and optoelectronic properties in order to promote solar light harvesting and alleviate photogenerated electron-hole recombination and the concomitant low quantum efficiency. This book presents a collection of original research articles on advanced photocatalytic materials synthesized by novel fabrication approaches and/or appropriate modifications that improve their performance for target photocatalytic applications such as water (cyanobacterial toxins, antibiotics, phenols, and dyes) and air (NOx and volatile organic compounds) pollutant degradation, hydrogen evolution, and hydrogen peroxide production by photoelectrochemical cells.

12.
Materials (Basel) ; 13(19)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993143

RESUMO

Heterostructured bilayer films, consisting of co-assembled TiO2 photonic crystals as the bottom layer and a highly performing mesoporous P25 titania as the top layer decorated with CoOx nanoclusters, are demonstrated as highly efficient visible-light photocatalysts. Broadband visible-light activation of the bilayer films was implemented by the surface modification of both titania layers with nanoscale clusters of Co oxides relying on the chemisorption of Co acetylacetonate complexes on TiO2, followed by post-calcination. Tuning the slow photon regions of the inverse opal supporting layer to the visible-light absorption of surface CoOx oxides resulted in significant amplification of salicylic-acid photodegradation under visible and ultraviolet (UV)-visible light (Vis), outperforming benchmark P25 films of higher titania loading. This enhancement was related to the spatially separated contributions of slow photon propagation in the inverse opal support layer assisted by Bragg reflection toward the CoOx-modified mesoporous P25 top layer. This effect indicates that photonic crystals may be highly effective as both photocatalytically active and backscattering layers in multilayer photocatalytic films.

13.
Nanomaterials (Basel) ; 10(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371303

RESUMO

Photonic crystal structuring has emerged as an advanced method to enhance solar light harvesting by metal oxide photocatalysts along with rational compositional modifications of the materials' properties. In this work, surface functionalization of TiO2 photonic crystals by blue luminescent graphene quantum dots (GQDs), n-π* band at ca. 350 nm, is demonstrated as a facile, environmental benign method to promote photocatalytic activity by the combination of slow photon-assisted light trapping with GQD-TiO2 interfacial electron transfer. TiO2 inverse opal films fabricated by the co-assembly of polymer colloidal spheres with a hydrolyzed titania precursor were post-modified by impregnation in aqueous GQDs suspension without any structural distortion. Photonic band gap engineering by varying the inverse opal macropore size resulted in selective performance enhancement for both salicylic acid photocatalytic degradation and photocurrent generation under UV-VIS and visible light, when red-edge slow photons overlapped with the composite's absorption edge, whereas stop band reflection was attenuated by the strong UVA absorbance of the GQD-TiO2 photonic films. Photoelectrochemical and photoluminescence measurements indicated that the observed improvement, which surpassed similarly modified benchmark mesoporous P25 TiO2 films, was further assisted by GQDs electron acceptor action and visible light activation to a lesser extent, leading to highly efficient photocatalytic films.

14.
Nanoscale ; 11(44): 21542-21553, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31687726

RESUMO

The development of nanostructured semiconductors with tailored morphology and electronic properties for surface-enhanced Raman scattering (SERS) has been attracting significant attention as a promising alternative to conventional coinage metal SERS substrates. In this work, functionalized TiO2 photonic crystals by graphene oxide nanocolloids (nanoGO) are demonstrated as highly sensitive, recyclable, plasmon-free SERS substrates that combine slow-photon amplification effects with the high adsorption capacity and surface reactivity of GO nanosheets. Comparative evaluation of photonic band gap engineered nanoGO-TiO2 inverse opal films was performed on methylene blue SERS detection under different laser excitations in combination with rigorous theoretical simulations of the photonic band structure. A very low detection limit of 6 × 10-7 M and an enhancement factor of 5 × 104 along with excellent self-cleaning performance and reusability could be achieved by the interplay of slow-photon effects assisted by interfacial charge transfer between the analyte and the nanoGO-TiO2 semiconducting substrate. Slow-photon management in combination with judicious engineering of chemical enhancement in photonic nanostructures is accordingly proposed as an advanced approach for the design of efficient dielectric SERS substrates.

15.
Materials (Basel) ; 12(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394874

RESUMO

Surface functionalization of TiO2 inverse opals by graphene oxide nanocolloids (nanoGO) presents a promising modification for the development of advanced photocatalysts that combine slow photon-assisted light harvesting, surface area, and mass transport of macroporous photonic structures with the enhanced adsorption capability, surface reactivity, and charge separation of GO nanosheets. In this work, post-thermal reduction of nanoGO-TiO2 inverse opals was investigated in order to explore the role of interfacial electron transfer vs. pollutant adsorption and improve their photocatalytic activity. Photonic band gap-engineered TiO2 inverse opals were fabricated by the coassembly technique and were functionalized by GO nanosheets and reduced under He at 200 and 500 °C. Comparative performance evaluation of the nanoGO-TiO2 films on methylene blue photodegradation under UV-VIS and visible light showed that thermal reduction at 200 °C, in synergy with slow photon effects, improved the photocatalytic reaction rate despite the loss of nanoGO and oxygen functional groups, pointing to enhanced charge separation. This was further supported by photoluminescence spectroscopy and salicylic acid UV-VIS photodegradation, where, in the absence of photonic effects, the photocatalytic activity increased, confirming that fine-tuning of interfacial coupling between TiO2 and reduced nanoGO is a key factor for the development of highly efficient photocatalytic films.

16.
Environ Sci Pollut Res Int ; 21(20): 11781-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24217967

RESUMO

Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.


Assuntos
Oxitetraciclina/isolamento & purificação , Prata/química , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta , Adsorção , Catálise/efeitos da radiação , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pós , Análise Espectral Raman , Difração de Raios X
17.
ChemSusChem ; 7(6): 1696-702, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687911

RESUMO

Zeolitic imidazolate frameworks (ZIFs) exhibit enhanced selectivity and increased CO2 uptake due to the incorporation of functional imidazolate units in their structure as well as their extensive porosity and ring flexibility. In situ Raman investigation of a representative host compound, ZIF-69, in practical CO2 pressure and temperature regimes (0-10 bar and 0-64 °C) correlates well with corresponding macroscopic CO2 sorption data and shows clear clear spectroscopic evidence of CO2 uptake. Significant positive shift of the 159 cm(-1) phenyl bending mode of the benzimidazole moiety indicates weak hydrogen bonding with CO2 in the larger cavities of the ZIF matrix. Raman spectroscopy is shown to be an easy and sensitive tool for quantifying CO2 uptake, identifying weak host-guest interactions and elucidating CO2 sorption mechanism in ZIFs.


Assuntos
Dióxido de Carbono/química , Imidazóis/química , Zeolitas/química , Adsorção , Poluição do Ar/prevenção & controle , Sequestro de Carbono , Porosidade , Pressão , Análise Espectral Raman , Temperatura
18.
Materials (Basel) ; 6(4): 1467-1484, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-28809221

RESUMO

In this work, we prepared oriented mesoporous thin films of silica on various solid substrates using the pluronic block copolymer P123 as a template. We attempted to insert guest iron oxide (FexOy) nanoparticles into these films by two different methods: (a) by co-precipitation-where iron precursors are introduced in the synthesis sol before deposition of the silica film-and subsequent oxide production during the film calcination step; (b) by preparing and calcining the silica films first then impregnating them with the iron precursor, obtaining the iron oxide nanoparticles by a second calcination step. We have examined the structural effects of the guest nanoparticles on the silica film structures using grazing incidence X-ray scattering (GISAXS), high-resolution transmission electron spectroscopy (HRTEM), spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), and Raman microscopy. Formation of nanoparticles by co-precipitation may induce substantial changes in the film structure leading, in our adopted process, to the appearance of lamellar ordering in the calcination stage. On the contrary, impregnation-based approaches perturb the film structures much more weakly, but are also less efficient in filling the pores with nanoparticles.

19.
J Phys Chem B ; 117(40): 12234-51, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24028407

RESUMO

Absorption of carbon dioxide and water in 1-butyl-3-methylimidazoliun tricyanomethanide ([C4C1im][TCM]) and 1-octyl-3-methylimidazolium tricyanomethanide ([C8C1im][TCM]) ionic liquids (ILs) was systematically investigated for the first time as a function of the H2O content by means of a gravimetric system together with in-situ Raman spectroscopy, excess molar volume (V(E)), and viscosity deviation measurements. Although CO2 absorption was marginally affected by water at low H2O molar fractions for both ILs, an increase of the H2O content resulted in a marked enhancement of both the CO2 solubility (ca. 4-fold) and diffusivity (ca. 10-fold) in the binary [C(n)C1im][TCM]/H2O systems, in contrast to the weak and/or detrimental influence of water in most physically and chemically CO2-absorbing ILs. In-situ Raman spectroscopy on the IL/CO2 systems verified that CO2 is physically absorbed in the dry ILs with no significant effect on their structural organization. A pronounced variation of distinct tricyanomethanide Raman modes was disclosed in the [C(n)C1im][TCM]/H2O mixtures, attesting to the gradual disruption of the anion-cation coupling by the hydrogen-bonded water molecules to the [TCM](-) anions, in accordance with the positive excess molar volumes and negative viscosity deviations for the binary systems. Most importantly, CO2 absorption in the ILs/H2O mixtures at high water concentrations revealed that the [TCM](-) Raman modes tend to restore their original state for the heavily hydrated ILs, in qualitative agreement with the intriguing nonmonotonous transients of CO2 absorption kinetics unveiled by the gravimetric measurements for the hybrid solvents. A molecular exchange mechanism between CO2 in the gas phase and H2O in the liquid phase was thereby proposed to explain the enhanced CO2 absorption in the hybrid [C(n)C1im][TCM]//H2O solvents based on the subtle competition between the TCM-H2O and TCM-CO2 interactions, which renders these ILs very promising for CO2 separation applications.

20.
Nanoscale Res Lett ; 6(1): 266, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21711770

RESUMO

The optical and structural properties of cadmium and lead sulfide nanocrystals deposited on mesoporous TiO2 substrates via the successive ionic layer adsorption and reaction method were comparatively investigated by reflectance, transmittance, micro-Raman and photoluminescence measurements. Enhanced interfacial electron transfer is evidenced upon direct growth of both CdS and PbS on TiO2 through the marked quenching of their excitonic emission. The optical absorbance of CdS/TiO2 can be tuned over a narrow spectral range. On the other side PbS/TiO2 exhibits a remarkable band gap tunability extending from the visible to the near infrared range, due to the distinct quantum size effects of PbS quantum dots. However, PbS/TiO2 suffers from severe degradation upon air exposure. Degradation effects are much less pronounced for CdS/TiO2 that is appreciably more stable, though it degrades readily upon visible light illumination.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa