Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25434601

RESUMO

Hemoglobin-oxygen (Hb-O2) binding properties are central to aerobic physiology, and must be optimized for an animal's aerobic requirements and environmental conditions, both of which can vary widely with seasonal changes or acutely with diving. In the case of tunas, the matter is further complicated by large regional temperature differences between tissues within the same animal. This study investigates the effects of thermal acclimation on red blood cell Hb-O2 binding in Pacific bluefin tuna (T. orientalis) and yellowfin tuna (T. albacares) maintained in captive tanks at acclimation temperatures of 17°, 20° and 24 °C. Oxygen binding properties of acclimated tuna isolated red blood cells were examined under varying experimental temperatures (15°-35 °C) and CO2 levels (0%, 0.5% and 1.5%). Results for Pacific bluefin tuna produced temperature-independence at 17 °C- and 20 °C-acclimation temperatures and significant reverse temperature-dependence at 24 °C-acclimation in the absence of CO2, with instances of reverse temperature-dependence in 17 °C- and 24 °C-acclimations at 0.5% and 1.5% CO2. In contrast, yellowfin tuna produced normal temperature-dependence at each acclimation temperature at 0% CO2, temperature-independence at 0.5% and 1.5% CO2, and significant reverse temperature-dependence at 17 °C-acclimation and 0.5% CO2. Thermal acclimation of Pacific bluefin tuna increased O2 binding affinity of the 17 °C-acclimation group, and produced a significantly steeper oxygen equilibrium curve slope (nH) at 24 °C-acclimation compared to the other acclimation temperatures. We discuss the potential implications of these findings below.


Assuntos
Aclimatação , Eritrócitos/metabolismo , Oxigênio/sangue , Atum/fisiologia , Animais , Dióxido de Carbono/sangue , Aquecimento Global , Hemoglobinas/metabolismo , Ligação Proteica , Temperatura
2.
Anal Biochem ; 441(1): 63-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23827235

RESUMO

Methods to systematically analyze in parallel the function of multiple protein or cell samples in vivo or ex vivo (i.e., functional proteomics) in a controlled gaseous environment have so far been limited. Here, we describe an apparatus and procedure that enables, for the first time, parallel assay of oxygen equilibria in multiple samples. Using this apparatus, numerous simultaneous oxygen equilibrium curves (OECs) can be obtained under truly identical conditions from blood cell samples or purified hemoglobins (Hbs). We suggest that the ability to obtain these parallel datasets under identical conditions can be of immense value both to biomedical researchers and clinicians who wish to monitor blood health and to physiologists who are studying nonhuman organisms and the effects of climate change on these organisms. Parallel monitoring techniques are essential in order to better understand the functions of critical cellular proteins. The procedure can be applied to human studies, where an OEC can be analyzed in light of an individual's entire genome. Here, we analyzed intraerythrocytic Hb, a protein that operates at the organism's environmental interface and then comes into close contact with virtually all of the organism's cells. The apparatus is scalable and establishes a functional proteomic screen that can be correlated with genomic information on the same individuals. This new method is expected to accelerate our general understanding of protein function, an increasingly challenging objective as advances in proteomic and genomic throughput outpace the ability to study proteins' functional properties.


Assuntos
Hemoglobinas/metabolismo , Oxigênio/sangue , Animais , Células Sanguíneas/metabolismo , Mudança Climática , Genômica , Humanos , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa