Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 20(7): 6932-43, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453371

RESUMO

We studied depth-dependent cerebral hemodynamic responses of rat brain following direct cortical electrical stimulation (DCES) in vivo with optical recording of intrinsic signal (ORIS) and near-infrared spectroscopy (NIRS). ORIS is used to visualize the immediate hemodynamic changes in cortical areas following the stimulation, whereas NIRS measures the hemodynamic changes originating from subcortical areas. We found strong hemodynamic changes in relation to DCES both in ORIS and NIRS data. In particular, the signals originating from cortical areas exhibited a tri-phasic response, whereas those originating from subcortical regions exhibited multi-phasic responses. In addition, NIRS signals from two different sets of source-detector separation were compared and analyzed to investigate the causality of perfusion, which demonstrated downstream propagation, indicating that the upper brain region reacted faster than the deep region.


Assuntos
Mapeamento Encefálico/instrumentação , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Estimulação Encefálica Profunda/instrumentação , Oxigênio/análise , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Imagens com Corantes Sensíveis à Voltagem/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Ratos , Ratos Sprague-Dawley , Integração de Sistemas
2.
Neural Regen Res ; 10(12): 2018-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26889193

RESUMO

To investigate a possible therapeutic mechanism of cell therapy in the field of cerebral palsy using granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells (mPBMCs), we compared the expression of inflammatory cytokines and neurotrophic factors in PBMCs and mPBMCs from children with cerebral palsy to those from healthy adult donors and to cord blood mononuclear cells donated from healthy newborns. No significant differences in expression of neurotrophic factors were found between PBMCs and mPBMCs. However, in cerebral palsy children, the expression of interleukin-6 was significantly increased in mPBMCs as compared to PBMCs, and the expression of interleukin-3 was significantly decreased in mPBMCs as compared to PBMCs. In healthy adults, the expression levels of both interleukin-1ß and interleukin-6 were significantly increased in mPBMCs as compared to PBMCs. The expression of brain-derived neurotrophic factors in mPBMC from cerebral palsy children was significantly higher than that in the cord blood or mPBMCs from healthy adults. The expression of G-CSF in mPBMCs from cerebral palsy children was comparable to that in the cord blood but significantly higher than that in mPBMCs from healthy adults. Lower expression of pro-inflammatory cytokines (interleukin-1ß, interleukin-3, and -6) and higher expression of anti-inflammatory cytokines (interleukin-8 and interleukin-9) were observed from the cord blood and mPBMCs from cerebral palsy children rather than from healthy adults. These findings indicate that mPBMCs from cerebral palsy and cord blood mononuclear cells from healthy newborns have the potential to become seed cells for treatment of cerebral palsy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa