Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
AAPS PharmSciTech ; 25(3): 60, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472523

RESUMO

The protective efficacies of current licensed vaccines against COVID-19 have significantly reduced as a result of SARS-CoV-2 variants of concern (VOCs) which carried multiple mutations in the Spike (S) protein. Considering that these vaccines were developed based on the S protein of the original SARS-CoV-2 Wuhan strain, we designed a recombinant plasmid DNA vaccine based on highly conserved and immunogenic B and T cell epitopes against SARS-CoV-2 Wuhan strain and the Omicron VOC. Literature mining and bioinformatics were used to identify 6 immunogenic peptides from conserved regions of the SARS-CoV-2 S and membrane (M) proteins. Nucleotide sequences encoding these peptides representing highly conserved B and T cell epitopes were cloned into a pVAX1 vector to form the pVAX1/S2-6EHGFP recombinant DNA plasmid vaccine. The DNA vaccine was intranasally or intramuscularly administered to BALB/c mice and evaluations of humoral and cellular immune responses were performed. The intramuscular administration of pVAX1/S2-6EHGFP was associated with a significantly higher percentage of CD8+ T cells expressing IFN-γ when compared with the empty vector and PBS controls. Intramuscular or intranasal administrations of pVAX1/S2-6EHGFP resulted in robust IgG antibody responses. Sera from mice intramuscularly immunized with pVAX1/S2-6EHGFP were found to elicit neutralizing antibodies capable of SARS-CoV-2 Omicron variant with the ACE2 cell surface receptor. This study demonstrated that the DNA vaccine construct encoding highly conserved immunogenic B and T cell epitopes was capable of eliciting potent humoral and cellular immune responses in mice.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Humanos , Camundongos , SARS-CoV-2 , Epitopos de Linfócito T , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , Peptídeos , Anticorpos Antivirais
2.
Pharm Res ; 40(8): 1999-2025, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344603

RESUMO

BACKGROUND: Influenza is a highly contagious respiratory disease which poses a serious threat to public health globally, causing severe diseases in 3-5 million humans and resulting in 650,000 deaths annually. The current licensed seasonal influenza vaccines lacked cross-reactivity against novel emerging influenza strains as they conferred limited neutralising capabilities. To address the issue, we designed a multi-epitope peptide-based vaccine delivered by the self-adjuvanting PLGA nanoparticles against influenza infections. METHODS: A total of six conserved peptides representing B- and T-cell epitopes of Influenza A were identified and they were formulated in either incomplete Freund's adjuvant containing CpG ODN 1826 or being encapsulated in PLGA nanoparticles for the evaluation of immunogenicity in BALB/c mice. RESULTS: The self-adjuvanting PLGA nanoparticles encapsulating the six conserved peptides were capable of eliciting the highest levels of IgG and IFN- γ producing cells. In addition, the immunogenicity of the six peptides encapsulated in PLGA nanoparticles showed greater humoral and cellular mediated immune responses elicited by the mixture of six naked peptides formulated in incomplete Freund's adjuvant containing CpG ODN 1826 in the immunized mice. Peptide 3 from the mixture of six peptides was found to exert necrotic effect on CD3+ T-cells and this finding indicated that peptide 3 should be removed from the nanovaccine formulation. CONCLUSION: The study demonstrated the self-adjuvanting properties of the PLGA nanoparticles as a delivery system without the need for incorporation of toxic and costly conventional adjuvants in multi-epitope peptide-based vaccines.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Humanos , Animais , Camundongos , Epitopos , Nanopartículas/química , Adjuvantes Imunológicos/química , Peptídeos , Camundongos Endogâmicos BALB C
3.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457159

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global public health crisis. Effective COVID-19 vaccines developed by Pfizer-BioNTech, Moderna, and Astra Zeneca have made significant impacts in controlling the COVID-19 burden, especially in reducing the transmission of SARS-CoV-2 and hospitalization incidences. In view of the emergence of new SARS-CoV-2 variants, vaccines developed against the Wuhan strain were less effective against the variants. Neutralizing antibodies produced by B cells are a critical component of adaptive immunity, particularly in neutralizing viruses by blocking virus attachment and entry into cells. Therefore, the identification of protective linear B-cell epitopes can guide epitope-based peptide designs. This study reviews the identification of SARS-CoV-2 B-cell epitopes within the spike, membrane and nucleocapsid proteins that can be incorporated as potent B-cell epitopes into peptide vaccine constructs. The bioinformatic approach offers a new in silico strategy for the mapping and identification of potential B-cell epitopes and, upon in vivo validation, would be useful for the rapid development of effective multi-epitope-based vaccines. Potent B-cell epitopes were identified from the analysis of three-dimensional structures of monoclonal antibodies in a complex with SARS-CoV-2 from literature mining. This review provides significant insights into the elicitation of potential neutralizing antibodies by potent B-cell epitopes, which could advance the development of multi-epitope peptide vaccines against SARS-CoV-2.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Biologia Computacional , Epitopos de Linfócito B , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Vacinas de Subunidades Antigênicas
4.
Med Microbiol Immunol ; 210(1): 1-11, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33515283

RESUMO

Dengue virus (DENV) comprises four serotypes (DENV1-4) which cause 390 million global infections with 500,000 hospitalizations and 25,000 fatalities annually. Currently, the only FDA approved DENV vaccine is the chimeric live-attenuated vaccine, Dengvaxia®, which is based on the yellow fever virus (YFV) genome that carries the prM and E genes of the respective DENV 1, 2, 3, and 4 serotypes. However, it has lower efficacies against serotypes DENV1 (51%) and DENV2 (34%) when compared with DENV3 (75%) and DENV4 (77%). The absence of T cell epitopes from non-structural (NS) and capsid (C) proteins of the yellow fever vaccine strain might have prevented Dengvaxia® to elicit robust cellular immune responses, as CD8+ T cell epitopes are mainly localized in the NS3 and NS5 regions. Multi-epitope-based peptide vaccines carrying CD4+, CD8+ T cell and B cell epitopes represent a novel approach to generate specific immune responses. Therefore, assessing and selecting epitopes that can induce robust B and T cell responses is a prerequisite for constructing an efficient multi-epitope peptide vaccine. Potent B and T cell epitopes can be identified by utilizing immunoinformatic analysis, but the immunogenicity of the epitopes have to be experimentally validated. In this review, we presented T cell epitopes that have been predicted by bioinformatic approaches as well as recent experimental validations of CD4+ and CD8+ T cell epitopes by ex-vivo stimulation of PBMCs with specific peptides. Immunoproteomic analysis could be utilized to uncover HLA-specific epitopes presented by DENV-infected cells. Based on various approaches, immunodominant epitopes capable of inducing strong immune responses could be selected and incorporated to form a universally applicable multi-epitope-based peptide dengue vaccine.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Dengue/imunologia , Dengue/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Epitopos Imunodominantes/imunologia , Animais , Anticorpos Neutralizantes/sangue , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos , Vacinas contra Dengue/genética , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/genética , Humanos , Epitopos Imunodominantes/isolamento & purificação , Camundongos
5.
J Immunol ; 201(9): 2832-2841, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275047

RESUMO

In addition to essential roles in protein synthesis, lysyl-tRNA synthetase (KRS) is secreted to trigger a proinflammatory function that induces macrophage activation and TNF-α secretion. KRS has been associated with autoimmune diseases such as polymyositis and dermatomyositis. In this study, we investigated the immunomodulatory effects of KRS on bone marrow-derived dendritic cells (DCs) of C57BL/6 mice and subsequent polarization of Th cells and analyzed the underlying mechanisms. KRS-treated DCs increased the expression of cell surface molecules and proinflammatory cytokines associated with DC maturation and activation. Especially, KRS treatment significantly increased production of IL-12, a Th1-polarizing cytokine, in DCs. KRS triggered the nuclear translocation of the NF-κB p65 subunit along with the degradation of IκB proteins and the phosphorylation of MAPKs in DCs. Additionally, JNK, p38, and ERK inhibitors markedly recovered the degradation of IκB proteins, suggesting the involvement of MAPKs as the upstream regulators of NF-κB in the KRS-induced DC maturation and activation. Importantly, KRS-treated DCs strongly increased the differentiation of Th1 cells when cocultured with CD4+ T cells. The addition of anti-IL-12-neutralizing Ab abolished the secretion of IFN-γ in the coculture, indicating that KRS induces Th1 cell response via DC-derived IL-12. Moreover, KRS enhanced the OVA-specific Th1 cell polarization in vivo following the adoptive transfer of OVA-pulsed DCs. Taken together, these results indicated that KRS effectively induced the maturation and activation of DCs through MAPKs/NF-κB-signaling pathways and favored DC-mediated Th1 cell response.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Lisina-tRNA Ligase/imunologia , Células Th1/imunologia , Animais , Células Dendríticas/citologia , Células Dendríticas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lisina-tRNA Ligase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/imunologia
6.
Int J Mol Sci ; 21(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443699

RESUMO

There has been a great interest in myeloid-derived suppressor cells (MDSCs) due to their biological functions in tumor-mediated immune escape by suppressing antitumor immune responses. These cells arise from altered myelopoiesis in response to the tumor-derived factors. The most recognized function of MDSCs is suppressing anti-tumor immune responses by impairing T cell functions, and these cells are the most important players in cancer dissemination and metastasis. Therefore, understanding the factors and the mechanism of MDSC differentiation, expansion, and recruitment into the tumor microenvironment can lead to its control. However, most of the studies only defined MDSCs with no further characterization of granulocytic and monocytic subsets. In this review, we discuss the mechanisms by which specific MDSC subsets contribute to cancers. A better understanding of MDSC subset development and the specific molecular mechanism is needed to identify treatment targets. The understanding of the specific molecular mechanisms responsible for MDSC accumulation would enable more precise therapeutic targeting of these cells.


Assuntos
Células Supressoras Mieloides/imunologia , Mielopoese , Neoplasias/sangue , Animais , Humanos , Células Supressoras Mieloides/citologia , Neoplasias/imunologia , Neoplasias/patologia
7.
Immunol Cell Biol ; 95(1): 99-107, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27507556

RESUMO

Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape by suppressing antitumor immune responses. Interleukin-33 (IL-33) is capable of regulating various immune cell populations; however, the effects of IL-33 on the differentiation of MDSCs have not been well characterized. In this study, we evaluated the effects of IL-33 on MDSCs and found that IL-33 significantly reduced the differentiation of lineage-negative bone marrow progenitor cells into granulocytic MDSCs (G-MDSCs). IL-33-treated MDSCs exhibited diminished immunosuppressive capacity; reduced inhibition on T-cell proliferation and interferon-γ production, and diminished production of reactive oxygen species. However, IL-33 treatment did not affect the frequency of monocytic MDSCs (M-MDSCs) or their production of nitric oxide and expression of arginase-1. Additionally, compared with control MDSCs, IL-33-treated MDSCs had reduced capacity to induce the differentiation or expansion of Treg cells. Moreover, in vivo IL-33 administration significantly decreased MDSCs and G-MDSCs accumulation in the spleen and tumor microenvironment. Also, despite increasing CD4+ and CD8+ T-cell infiltration, IL-33 administration markedly decreased Treg-cell population in tumor microenvironment. Taken together, our findings indicate that IL-33 reduces the frequency and immunosuppressive activity of G-MDSCs and ultimately the extent of tumor growth.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Terapia de Imunossupressão , Interleucina-33/farmacologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Células Supressoras Mieloides/citologia , Animais , Células da Medula Óssea/citologia , Linhagem da Célula/efeitos dos fármacos , Feminino , Interleucina-33/administração & dosagem , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/citologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Microambiente Tumoral
8.
Cytokine ; 99: 106-113, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28802996

RESUMO

IL-33 is associated with a variety of autoimmune diseases, such as sclerosis, inflammatory bowel disease, and rheumatoid arthritis. Although IL-33 is mainly involved in the induction of Th2 cells, however, the relationship between IL-33 and Th17 cells is still largely unknown. In this study, we investigated the effects of IL-33 on DC-mediated CD4+ T cell activation and Th17 cell differentiation because DCs are essential cells for presenting self-antigens to CD4+ T cells in autoimmune disease conditions. OT-II mice were injected with IL-33-treated DCs or untreated DCs that were primed by OVA323-339 peptide, and their Th17 cell responses were compared. Th17 cell population and IL-17 expression levels were significantly increased in draining lymph nodes of mice injected with IL-33-treated DCs, compared with those in mice injected with untreated DCs. IL-33 treatment maturated DCs to present self-antigens and to increase production of proinflammatory cytokines such as IL-1ß and IL-6, which have a crucial role in Th17 cell differentiation. We found that the IL-33-matured DCs enhanced the expression of an early T cell activation marker (CD69) and the Th17 master transcription factor (RORγt), but IL-33 did not directly affect CD4+ T cell differentiation or increase Th17 polarization. Notably, neutralizing IL-1ß and/or IL-6 significantly decreased IL-17 expression levels and Th17 cell population which were increased by the coculture of CD4+ T cells with IL-33-matured DCs, indicating that IL-33 may induce Th17 cell responses via IL-1ß and IL-6 derived from IL-33-matured DCs.


Assuntos
Células Dendríticas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Interleucina-6/metabolismo , Células Th17/imunologia , Animais , Diferenciação Celular , Feminino , Interleucina-17/metabolismo , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th17/citologia , Regulação para Cima
9.
Cancer Immunol Immunother ; 65(1): 61-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26613952

RESUMO

Myeloid-derived suppressor cells (MDSCs) are one of the most important cell types that contribute to negative regulation of immune responses in the tumor microenvironment. Recently, aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1), a novel pleiotropic cytokine, was identified as an antitumor protein that inhibits angiogenesis and induces antitumor responses. However, the effect of AIMP1 on MDSCs in the tumor environment remains unclear. In the present study, we demonstrated that AIMP1 significantly inhibited tumor growth in 4T1 breast cancer-bearing mice and reduced MDSCs population of tumor sites and spleens of tumor-bearing mice. AIMP1 reduced expansion of MDSCs from bone marrow-derived cells in the tumor-conditioned media. AIMP1 also negatively regulated suppressive activities of MDSCs by inhibiting IL-6 and NO production, and Arg-1 expression. Furthermore, treatment of breast cancer-bearing mice with AIMP1 decreased the capacity of MDSCs to suppress T cell proliferation and Treg cell induction. Western blot and inhibition experiments showed that downregulation of MDSCs functions by AIMP1 may result from attenuated activation of STATs, Akt, and ERK. These findings indicate that AIMP1 plays an essential role in negative regulation of suppressive functions of MDSCs. Therefore, it has a significant potential as a therapeutic agent for cancer treatment.


Assuntos
Aminoacil-tRNA Sintetases/imunologia , Apresentação de Antígeno/imunologia , Neoplasias da Mama/imunologia , Células Mieloides/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
10.
J Immunol ; 193(11): 5453-60, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25362180

RESUMO

Myeloid-derived suppressor cells (MDSCs) are major immunosuppressive cells that lead to T cell defects in cancer. IL-18 is important in inflammatory and immune responses. IL-18 has been reported to have a dual effect on tumor progression, as it not only stimulates host immune responses, but also exerts procancer effects by inducing immune escape and angiogenesis. In the present study, we investigated the effect of IL-18 on MDSCs and found that IL-18 treatment significantly increased the percentage and the absolute number of monocytic MDSCs (M-MDSCs) via differentiation of CD11b(-) bone marrow progenitor cells. IL-18-induced MDSCs showed enhanced suppression of T cell proliferation and IFN-γ production along with a dramatic increase of M-MDSC suppressive function, including NO production and arginase 1 expression. Although IL-18 decreased the number of granulocytic MDSCs (G-MDSCs) in a concentration-dependent manner, we found that the absolute number of G-MDSCs and their reactive oxygen species production remained unchanged. Additionally, we demonstrated that IL-18-induced M-MDSCs have a more potent suppressive effect on T cell responses with lower IFN-γ production than do G-MDSCs, suggesting that the increased suppressive effect observed in our study resulted from M-MDSCs. Furthermore, in vivo administration of IL-18 significantly increased the accumulation of M-MDSCs in the tumor microenvironment. Taken together, our findings indicate that IL-18 specifically enhances the differentiation and function of M-MDSCs, leading to immunosuppression.


Assuntos
Terapia de Imunossupressão , Interleucina-18/imunologia , Monócitos/imunologia , Células Mieloides/imunologia , Linfócitos T/imunologia , Animais , Arginase/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
11.
AAPS J ; 26(5): 93, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138686

RESUMO

The COVID-19 pandemic continues to cause infections and deaths, which are attributable to the SARS-CoV-2 Omicron variant of concern (VOC). Moderna's response to the declining protective efficacies of current SARS-CoV-2 vaccines against Omicron was to develop a bivalent booster vaccine based on the Spike (S) protein from the Wuhan and Omicron BA.4/BA.5 strains. This approach, while commendable, is unfeasible in light of rapidly emerging mutated viral strains. PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2024. Articles included focused on specific themes such as the clinical history of recombinant protein vaccine development against different diseases, including COVID-19, the production of recombinant protein vaccines using different host expression systems, aspects to consider in recombinant protein vaccine development, and overcoming problems associated with large-scale recombinant protein vaccine production. In silico approaches to identify conserved and immunogenic epitopes could provide broad protection against SARS-CoV-2 VOCs but require validation in animal models. The recombinant protein vaccine development platform has shown a successful history in clinical development. Recombinant protein vaccines incorporating conserved epitopes may utilize a number of expression systems, such as yeast (Saccharomyces cerevisiae), baculovirus-insect cells (Sf9 cells), and Escherichia coli (E. coli). Current multi-epitope subunit vaccines against SARS-CoV-2 utilizing synthetic peptides are unfeasible for large-scale immunizations. Recombinant protein vaccines based on conserved and immunogenic proteins produced using E. coli offer high production yields, convenient purification, and cost-effective production of large-scale vaccine quantities capable of protecting against the SARS-CoV-2 D614G strain and its VOCs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinas Sintéticas , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Vacinas Sintéticas/imunologia , Animais , Proteínas Recombinantes/imunologia , Desenvolvimento de Vacinas , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Epitopos/imunologia , Vacinas de Subunidades Proteicas
12.
Methods Mol Biol ; 2821: 165-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997488

RESUMO

Vaccination is an effective means of inducing immune protection to prevent transmissible diseases. During the Covid-19 pandemic, immunizations using traditional and novel vaccine platforms such as the inactivated SARSCo-V-2 vaccine, adenoviral-vectored, and nucleic acid-based mRNA vaccines have been relatively successful in controlling the rates of infection and hospitalizations. Nevertheless, the danger posed by the emergence of SARS-CoV-2 variants would set the stage for the design of next generation vaccines. To overcome the lack of efficacy of current vaccines against emerging SARS-CoV-2 variants, new vaccines must be able to overcome the reduced effectiveness of the current vaccines. Since the current Covid-19 vaccines are dependent on the whole S-protein of Wuhan strain as the antigen, mutations have rendered the current Covid-19 vaccines less effective against variants of concern (VoCs). Instead of using the whole S-protein, peptide-based epitopes could be predicted using immunoinformatic approaches, simulation of the 3D structures, overlapping peptides covering the whole length of the S-protein or peptide arrays based on synthetic peptide combinatorial libraries comprising peptides recognizable by monoclonal antibodies. B-cell epitopes were predicted, and immunogenicity of peptides was validated in mice by immunizing mice with peptides conjugated to keyhole limpet hemocyanin (KLH) mixed with Montanide 51 as an adjuvant. The immunogenicity of epitopes that could elicit peptide specific IgGs was determined by peptide-based ELISA. Neutralizing activities were determined by cPass and pseudovirus-based neutralization assays.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Epitopos de Linfócito B , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , SARS-CoV-2/imunologia , Camundongos , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Peptídeos/imunologia , Peptídeos/química , Vacinas contra COVID-19/imunologia , Mapeamento de Epitopos/métodos
13.
Nanomedicine (Lond) ; 19(21-22): 1779-1799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39140594

RESUMO

Aim: To develop a trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against hand foot and mouth disease (HFMD) and assess its immunogenicity in mice.Materials & methods: Trivalent plasmid carrying the VP1 and VP2 genes of EV-A71, VP1 gene of CV-A16 was encapsulated in Chitosan-TPP nanoparticles through ionic gelation. In vitro characterization and in vivo immunization studies of the CS-TPP-NPs (pIRES-VP121) were performed.Results: Mice administered with CS-TPP NPs (pIRES-VP121) intramuscularly were observed to have the highest IFN-γ response. Sera from mice immunized with the naked pDNA and CS-TPP-NPs (pIRES-VP121) demonstrated good viral clearance against wild-type EV-A71 and CV-A16 in RD cells.Conclusion: CS-TPP-NPs (pIRES-VP121) could serve as a prototype for future development of multivalent HFMD DNA vaccine candidates.


[Box: see text].


Assuntos
Quitosana , Enterovirus Humano A , Doença de Mão, Pé e Boca , Nanopartículas , Vacinas de DNA , Animais , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Quitosana/química , Nanopartículas/química , Camundongos , Enterovirus Humano A/imunologia , Doença de Mão, Pé e Boca/prevenção & controle , Doença de Mão, Pé e Boca/imunologia , Camundongos Endogâmicos BALB C , Feminino , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Humanos , Plasmídeos , Interferon gama/metabolismo , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/química , Polifosfatos
14.
Cytokine ; 63(2): 179-86, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23697689

RESUMO

IL-12 and IL-18 are cytokines which are mainly secreted by endothelial cells and monocytes including dendritic cells. The well-known effects of IL-12 and IL-18 in the protection against bacteria and virus infection as well as tumor development are associated with their characteristics in synergistically driving the development of T helper type 1 (Th1) cells and inducing IFN-γ production. In this study, we compared the knockout effects of IL-12 and/or IL-18 genes on phenotypes and functional capabilities of dendritic cells (DCs) including their ability to polarize naive CD4(+) T cells. The expression levels of surface molecules such as MHC II, CD80, CD86 and ICOSL, and endocytic capacity were not significantly differences between DCs of wild type (WT) mice and double knockout (DKO) mice of IL-12p40 and IL-18. Additionally, DCs lacking IL-12p40 and/or IL-18 genes were equivalently efficient in inducing T cell proliferation, compared with the WT-DCs. Interestingly, IL-10 production significantly decreased in DKO-DCs, while production of other inflammation-related cytokines were unaffected in WT-DCs and DKO-DCs. Importantly, IL-12p40(-/-)-DCs and DKO-DCs severely impaired the ability to induce IFN-γ and IL-17 production from CD4(+) T cells. IL-18(-/-)-DCs also moderately decreased IL-17 production and IL-17-expressing CD4(+) T cells when co-cultured with CD4(+) T cells, demonstrating the involvement of IL-18 in driving IL-17 differentiation. Taken together, these results suggest the principal contribution of IL-12p40 in inducing Th1 and Th17 polarization, regardless of similar surface phenotypes of DCs.


Assuntos
Células Dendríticas/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-18/metabolismo , Células Th1/metabolismo , Células Th17/metabolismo , Animais , Diferenciação Celular/imunologia , Polaridade Celular/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/biossíntese , Interferon gama/biossíntese , Interleucina-10/metabolismo , Subunidade p40 da Interleucina-12/deficiência , Subunidade p40 da Interleucina-12/genética , Interleucina-17/biossíntese , Interleucina-17/metabolismo , Interleucina-18/deficiência , Interleucina-18/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/imunologia , Células Th17/imunologia
15.
Viruses ; 15(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36992333

RESUMO

SARS-CoV-2 has caused the COVID-19 pandemic, with over 673 million infections and 6.85 million deaths globally. Novel mRNA and viral-vectored vaccines were developed and licensed for global immunizations under emergency approval. They have demonstrated good safety and high protective efficacy against the SARS-CoV-2 Wuhan strain. However, the emergence of highly infectious and transmissible variants of concern (VOCs) such as Omicron was associated with considerable reductions in the protective efficacy of the current vaccines. The development of next-generation vaccines that could confer broad protection against both the SARS-CoV-2 Wuhan strain and VOCs is urgently needed. A bivalent mRNA vaccine encoding the Spike proteins of both the SARS-CoV-2 Wuhan strain and the Omicron variant has been constructed and approved by the US FDA. However, mRNA vaccines are associated with instability and require an extremely low temperature (-80 °C) for storage and transportation. They also require complex synthesis and multiple chromatographic purifications. Peptide-based next-generation vaccines could be developed by relying on in silico predictions to identify peptides specifying highly conserved B, CD4+ and CD8+ T cell epitopes to elicit broad and long-lasting immune protection. These epitopes were validated in animal models and in early phase clinical trials to demonstrate immunogenicity and safety. Next-generation peptide vaccine formulations could be developed to incorporate only naked peptides, but they are costly to synthesize and production would generate extensive chemical waste. Continual production of recombinant peptides specifying immunogenic B and T cell epitopes could be achieved in hosts such as E. coli or yeast. However, recombinant protein/peptide vaccines require purification before administration. The DNA vaccine might serve as the most effective next-generation vaccine for low-income countries, since it does not require an extremely low temperature for storage or need extensive chromatographic purification. The construction of recombinant plasmids carrying genes specifying highly conserved B and T cell epitopes meant that vaccine candidates representing highly conserved antigenic regions could be rapidly developed. Poor immunogenicity of DNA vaccines could be overcome by the incorporation of chemical or molecular adjuvants and the development of nanoparticles for effective delivery.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Animais , Humanos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Epitopos de Linfócito T/genética , Escherichia coli , Pandemias/prevenção & controle , Vacinas de DNA/genética , Vacinas Virais/genética , Vacinas Combinadas
16.
Front Cell Infect Microbiol ; 12: 1004608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189361

RESUMO

Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as 'hiding' in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.


Assuntos
Vírus da Dengue , MicroRNAs , Imunidade Adaptativa , Animais , Evasão da Resposta Imune , Imunidade Inata , MicroRNAs/genética
17.
Biomed J ; 44(1): 18-30, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33727051

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic involving so far more than 22 million infections and 776,157 deaths. Effective vaccines are urgently needed to prevent SARS-CoV-2 infections. No vaccines have yet been approved for licensure by regulatory agencies. Even though host immune responses to SARS-CoV-2 infections are beginning to be unravelled, effective clearance of virus will depend on both humoral and cellular immunity. Additionally, the presence of Spike (S)-glycoprotein reactive CD4+ T-cells in the majority of convalescent patients is consistent with its significant role in stimulating B and CD8+ T-cells. The search for immunodominant epitopes relies on experimental evaluation of peptides representing the epitopes from overlapping peptide libraries which can be costly and labor-intensive. Recent advancements in B- and T-cell epitope predictions by bioinformatic analysis have led to epitope identifications. Assessing which peptide epitope can induce potent neutralizing antibodies and robust T-cell responses is a prerequisite for the selection of effective epitopes to be incorporated in peptide-based vaccines. This review discusses the roles of B- and T-cells in SARS-CoV-2 infections and experimental validations for the selection of B-, CD4+ and CD8+ T-cell epitopes which could lead to the construction of a multi-epitope peptide vaccine. Peptide-based vaccines are known for their low immunogenicity which could be overcome by incorporating immunostimulatory adjuvants and nanoparticles such as Poly Lactic-co-Glycolic Acid (PLGA) or chitosan.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Biologia Computacional , Humanos , Vacinas de Subunidades Antigênicas/imunologia
18.
Front Pharmacol ; 12: 682286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149426

RESUMO

Mucosal surfaces are the first site of infection for most infectious diseases and oral vaccination can provide protection as the first line of defense. Unlike systemic administration, oral immunization can stimulate cellular and humoral immune responses at both systemic and mucosal levels to induce broad-spectrum and long-lasting immunity. Therefore, to design a successful vaccine, it is essential to stimulate the mucosal as well as systemic immune responses. Successful oral vaccines need to overcome the harsh gastrointestinal environment such as the extremely low pH, proteolytic enzymes, bile salts as well as low permeability and the low immunogenicity of vaccines. In recent years, several delivery systems and adjuvants have been developed for improving oral vaccine delivery and immunogenicity. Formulation of vaccines with nanoparticles and microparticles have been shown to improve antigen stability, availability and adjuvanticity as well as immunostimulatory capacity, target delivery and specific release. This review discusses how nanoparticles (NPs) and microparticles (MPs) as oral carriers with adjuvant characteristics can be beneficial in oral vaccine development.

19.
Front Biosci (Landmark Ed) ; 26(11): 1286-1304, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34856768

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections were first detected in Wuhan, China in December 2019 and resulted in a worldwide pandemic in 2020. SARS-CoV-2 infections totalled more than 180 million with 3.9 million deaths as of June 24, 2021. Tremendous research efforts have resulted in the development of at least 64 vaccine candidates that have reached Phase I to III clinical trials within 14 months. The primary efficacy endpoint for a random placebo-controlled clinical trial of a COVID-19 vaccine to be approved by US FDA should confer at least 50% protection against COVID-19. Three COVID-19 vaccines (BNT162b2, mRNA-1273 and Sputnik V) in clinical Phase III trials have now achieved >90% efficacy in preventing COVID-19. Since SARS-CoV-2 is highly contagious, vaccines are expected to achieve at least 80% herd immunity in the world's population to effectively prevent SARS-CoV-2 infections. An overview of safety, immunogenicity and efficacy of the current frontrunner vaccines are reviewed.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Ensaios Clínicos como Assunto , SARS-CoV-2/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Humanos , Pandemias
20.
Life Sci ; 287: 120097, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715144

RESUMO

AIMS: Enterovirus A71 (EV-A71) is an etiological agent of hand foot and mouth disease (HFMD) and has the potential to cause severe neurological infections in children. L-SP40 peptide was previously known to inhibit EV-A71 by prophylactic action. This study aimed to identify the mechanism of inhibition in Rhabdomyosarcoma (RD) cells and in vivo therapeutic potential of L-SP40 peptide in a murine model. MAIN METHODS: A pull-down assay was performed to identify the binding partner of the L-SP40 peptide. Co-immunoprecipitation and co-localization assays with the L-SP40 peptide were employed to confirm the receptor partner in RD cells. The outcomes were validated using receptor knockdown and antibody blocking assays. The L-SP40 peptide was further evaluated for the protection of neonatal mice against lethal challenge by mouse-adapted EV-A71. KEY FINDINGS: The L-SP40 peptide was found to interact and co-localize with nucleolin, the key attachment receptor of Enteroviruses A species, as demonstrated in the pull-down, co-immunoprecipitation and co-localization assays. Knockdown of nucleolin from RD cells led to a significant reduction of 3.5 logs of viral titer of EV-A71. The L-SP40 peptide demonstrated 80% protection of neonatal mice against lethal challenge by the mouse-adapted virus with a drastic reduction in the viral loads in the blood (~4.5 logs), skeletal muscles (1.5 logs) and brain stem (1.5 logs). SIGNIFICANCE: L-SP40 peptide prevented severe hind limb paralysis and death in suckling mice and could serve as a potential broad-spectrum antiviral candidate to be further evaluated for safety and potency in future clinical trials against EV-A71.


Assuntos
Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/metabolismo , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos ICR , Fragmentos de Peptídeos/administração & dosagem , Ligação Proteica/fisiologia , Resultado do Tratamento , Nucleolina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa