Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36850388

RESUMO

The Internet of things (IoT) combines different sources of collected data which are processed and analyzed to support smart city applications. Machine learning and deep learning algorithms play a vital role in edge intelligence by minimizing the amount of irrelevant data collected from multiple sources to facilitate these smart city applications. However, the data collected by IoT sensors can often be noisy, redundant, and even empty, which can negatively impact the performance of these algorithms. To address this issue, it is essential to develop effective methods for detecting and eliminating irrelevant data to improve the performance of intelligent IoT applications. One approach to achieving this goal is using data cleaning techniques, which can help identify and remove noisy, redundant, or empty data from the collected sensor data. This paper proposes a deep reinforcement learning (deep RL) framework for IoT sensor data cleaning. The proposed system utilizes a deep Q-network (DQN) agent to classify sensor data into three categories: empty, garbage, and normal. The DQN agent receives input from three received signal strength (RSS) values, indicating the current and two previous sensor data points, and receives reward feedback based on its predicted actions. Our experiments demonstrate that the proposed system outperforms a common time-series-based fully connected neural network (FCDQN) solution, with an accuracy of around 96% after the exploration mode. The use of deep RL for IoT sensor data cleaning is significant because it has the potential to improve the performance of intelligent IoT applications by eliminating irrelevant and harmful data.

2.
Sensors (Basel) ; 21(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477481

RESUMO

Computation offloading enables intensive computational tasks in edge computing to be separated into multiple computing resources of the server to overcome hardware limitations. Deep learning derives the inference approach based on the learning approach with a volume of data using a sufficient computing resource. However, deploying the domain-specific inference approaches to edge computing provides intelligent services close to the edge of the networks. In this paper, we propose intelligent edge computing by providing a dynamic inference approach for building environment control. The dynamic inference approach is provided based on the rules engine that is deployed on the edge gateway to select an inference function by the triggered rule. The edge gateway is deployed in the entry of a network edge and provides comprehensive functions, including device management, device proxy, client service, intelligent service and rules engine. The functions are provided by microservices provider modules that enable flexibility, extensibility and light weight for offloading domain-specific solutions to the edge gateway. Additionally, the intelligent services can be updated through offloading the microservices provider module with the inference models. Then, using the rules engine, the edge gateway operates an intelligent scenario based on the deployed rule profile by requesting the inference model of the intelligent service provider. The inference models are derived by training the building user data with the deep learning model using the edge server, which provides a high-performance computing resource. The intelligent service provider includes inference models and provides intelligent functions in the edge gateway using a constrained hardware resource based on microservices. Moreover, for bridging the Internet of Things (IoT) device network to the Internet, the gateway provides device management and proxy to enable device access to web clients.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37851553

RESUMO

Developing an efficient heartbeat monitoring system has become a focal point in numerous healthcare applications. Specifically, in the last few years, heartbeat classification for arrhythmia detection has gained considerable interest from researchers. This paper presents a novel deep representation learning method for the efficient detection of arrhythmic beats. To mitigate the issues associated with the imbalanced data distribution, a novel re-sampling strategy is introduced. Unlike the existing oversampling methods, the proposed technique transforms majority-class samples into minority-class samples with a novel translation loss function. This approach assists the model in learning a more generalized representation of crucially important minority class samples. Moreover, by exploiting an auxiliary feature, an augmented attention module is designed that focuses on the most relevant and target-specific information. We adopted an inter-patient classification paradigm to evaluate the proposed method. The experimental results of this study on the MIT-BIH arrhythmia database clearly indicate that the proposed model with augmented attention mechanism and over-sampling strategy significantly learns a balanced deep representation and improves the classification performance of vital heartbeats.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa