Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 25(2): 433-441, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30956426

RESUMO

In order to decrease the concentration of toxic metals in contaminated lands, phytoextraction can be suitable considering the use of plant species with high potential for biomass production, such as biomass sorghum (Sorghum bicolor L.). We assessed a biomass sorghum (BRS716) potential as a copper phytoextractor as well as the physiological stability under this stressful condition. A completely randomized experimental design was used for a greenhouse experiment in which sorghum plants were submitted to a range of Cu2+ concentrations: 2.3, 10.9, 19.6, 30.5, 37.6 and 55.6 mg dm-3. The plant growth was not affected by increasing Cu2+ concentrations, suggesting that this species is tolerant to copper. There was a decrease in photosynthetic rate according to the increase in Cu2+ concentration, but not at a level that could disturb plant metabolism and eventual death. The values obtained for transfer index ranged from 0.62 to 0.11 which evidenced the restriction of Cu2+ transport to the aerial parts. The more Cu2+ available in soil, the smaller the amount of Cu2+ transported to aerial parts of sorghum. So, our results show that biomass sorghum has potential to be used for Cu2+ phytoextraction in concentration of up to 20 mg dm-3. Also, in heavily Cu2+ polluted sites, it can be used to produce biomass for bioenergy purpose, promoting a low rate of Cu2+ extraction.

2.
Environ Sci Pollut Res Int ; 28(36): 50931-50940, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34378132

RESUMO

Industrial revolution markedly increased the environmental contamination by different pollutants, which include the metal lead (Pb). The phytoremediation potential of native species from tropical regions is little known, especially for woody plants. The present study aimed to evaluate the performance of Lonchocarpus cultratus (Fabaceae), a tree species from the Brazilian savanna, grown in soil that was artificially contaminated with increasing Pb concentrations (control and 4 Pb treatments, 56, 120, 180, and 292 mg kg-1) for 6 months. The biomass of L. cultratus was not depressed by exposure to Pb, despite the high accumulation of this metal (up to 7421.23 µg plant-1), indicating a high plant tolerance to this trace metal. Lead was mainly accumulated in roots (from 67 to 99%), suggesting that the low root-to-shoot Pb translocation is a plant strategy to avoid Pb-induced damages in photosynthetic tissues. Accordingly, the content of chlorophylls a and b was maintained at similar levels between Pb-treated and control plants. Moreover, increments in leaf area were noticed in Pb-treated plants in comparison to the control plants (on average, 24.7%). In addition, root length was boosted in plants under Pb exposure (22.6-66.7%). In conclusion, L. cultratus is able to endure the exposure to high Pb concentrations in soil, being a potential plant species to be used for Pb phytostabilization in metal-contaminated soils in tropical regions.


Assuntos
Fabaceae , Poluentes do Solo , Biodegradação Ambiental , Pradaria , Chumbo , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Árvores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa