Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 27(11): 4429-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23896728

RESUMO

The piggyBac transposon is one of the most attractive nonviral tools for mammalian genome manipulations. Given that piggybac mobilizes in a "cut-and-paste" fashion, integrant remobilization could potentially damage the host genome. Here, we report a novel piggyBac transposon system with a series of recombinant transposases. We found that the transposition activity of wild-type (PBase) and hyperactive (hyPBase) piggyBac transposases can be significantly increased by peptide fusions in a cell-type dependent fashion, with the greatest change typically seen in mouse embryonic stem (ES) cells. The two most potent recombinant transposases, TPLGMH and ThyPLGMH, give a 9- and 7-fold increase, respectively, in the number of integrants in HEK293 compared with Myc-tagged PBase (MycPBase), and both display 4-fold increase in generating induced pluripotential stem cells. Interestingly, ThyPLGMH but not TPLGMH shows improved chromosomal excision activity (2.5-fold). This unique feature of TPLGMH provides the first evidence that integration activity of a transposase can be drastically improved without increasing its remobilization activity. Transposition catalyzed by ThyPLGMH is more random and occurs further from CpG islands than that catalyzed by MycPBase or TPLGMH. Our transposon system diversifies the mammalian genetic toolbox and provides a spectrum of piggyBac transposases that is better suited to different experimental purposes.


Assuntos
Elementos de DNA Transponíveis/genética , Marcação de Genes/métodos , Genoma , Animais , Células CHO , Reprogramação Celular , Cromossomos/genética , Cricetinae , Cricetulus , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Engenharia Genética/métodos , Células HEK293 , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transposases/metabolismo
2.
Sci Rep ; 11(1): 12388, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117319

RESUMO

Sample barcoding is essential in mass cytometry analysis, since it can eliminate potential procedural variations, enhance throughput, and allow simultaneous sample processing and acquisition. Sample pooling after prior surface staining termed live-cell barcoding is more desirable than intracellular barcoding, where samples are pooled after fixation and permeabilization, since it does not depend on fixation-sensitive antigenic epitopes. In live-cell barcoding, the general approach uses two tags per sample out of a pool of antibodies paired with five palladium (Pd) isotopes in order to preserve appreciable signal-to-noise ratios and achieve higher yields after sample deconvolution. The number of samples that can be pooled in an experiment using live-cell barcoding is limited, due to weak signal intensities associated with Pd isotopes and the relatively low number of available tags. Here, we describe a novel barcoding technique utilizing 10 different tags, seven cadmium (Cd) tags and three Pd tags, with superior signal intensities that do not impinge on lanthanide detection, which enables enhanced pooling of samples with multiple experimental conditions and markedly enhances sample throughput.


Assuntos
Separação Celular/métodos , Leucócitos Mononucleares/citologia , Espectrometria de Massas/métodos , Células Cultivadas , Humanos , Imunoensaio/métodos , Leucócitos Mononucleares/classificação , Análise de Célula Única/métodos
3.
Stem Cell Reports ; 16(8): 2014-2028, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34242617

RESUMO

Histone variants contribute to the complexity of the chromatin landscape and play an integral role in defining DNA domains and regulating gene expression. The histone H3 variant H3.3 is incorporated into genic elements independent of DNA replication by its chaperone HIRA. Here we demonstrate that Hira is required for the self-renewal of adult hematopoietic stem cells (HSCs) and to restrain erythroid differentiation. Deletion of Hira led to rapid depletion of HSCs while differentiated hematopoietic cells remained largely unaffected. Depletion of HSCs after Hira deletion was accompanied by increased expression of bivalent and erythroid genes, which was exacerbated upon cell division and paralleled increased erythroid differentiation. Assessing H3.3 occupancy identified a subset of polycomb-repressed chromatin in HSCs that depends on HIRA to maintain the inaccessible, H3.3-occupied state for gene repression. HIRA-dependent H3.3 incorporation thus defines distinct repressive chromatin that represses erythroid differentiation of HSCs.


Assuntos
Células-Tronco Adultas/metabolismo , Proteínas de Ciclo Celular/genética , Diferenciação Celular/genética , Células Eritroides/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Chaperonas de Histonas/genética , Fatores de Transcrição/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular/metabolismo , Autorrenovação Celular/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Hematopoese/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA-Seq/métodos , Fatores de Transcrição/metabolismo
4.
Cell Rep ; 36(3): 109432, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34270918

RESUMO

Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

5.
bioRxiv ; 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32995792

RESUMO

Adoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene ( NR3C1 ) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

6.
Cell Rep ; 17(5): 1453-1461, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27783956

RESUMO

Our understanding of the mechanisms that regulate hematopoietic stem/progenitor cells (HSPCs) has been advanced by the ability to genetically manipulate mice; however, germline modification is time consuming and expensive. Here, we describe fast, efficient, and cost-effective methods to directly modify the genomes of mouse and human HSPCs using the CRISPR/Cas9 system. Using plasmid and virus-free delivery of guide RNAs alone into Cas9-expressing HSPCs or Cas9-guide RNA ribonucleoprotein (RNP) complexes into wild-type cells, we have achieved extremely efficient gene disruption in primary HSPCs from mouse (>60%) and human (∼75%). These techniques enabled rapid evaluation of the functional effects of gene loss of Eed, Suz12, and DNMT3A. We also achieved homology-directed repair in primary human HSPCs (>20%). These methods will significantly expand applications for CRISPR/Cas9 technologies for studying normal and malignant hematopoiesis.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Animais , Reparo do DNA , Deleção de Genes , Técnicas de Inativação de Genes , Humanos , Antígenos Comuns de Leucócito/metabolismo , Camundongos
7.
Cell Stem Cell ; 17(5): 585-96, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26440282

RESUMO

How cancer cells adapt to metabolically adverse conditions in patients and strive to proliferate is a fundamental question in cancer biology. Here we show that AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase, confers metabolic stress resistance to leukemia-initiating cells (LICs) and promotes leukemogenesis. Upon dietary restriction, MLL-AF9-induced murine acute myeloid leukemia (AML) activated AMPK and maintained leukemogenic potential. AMPK deletion significantly delayed leukemogenesis and depleted LICs by reducing the expression of glucose transporter 1 (Glut1), compromising glucose flux, and increasing oxidative stress and DNA damage. LICs were particularly dependent on AMPK to suppress oxidative stress in the hypoglycemic bone marrow environment. Strikingly, AMPK inhibition synergized with physiological metabolic stress caused by dietary restriction and profoundly suppressed leukemogenesis. Our results indicate that AMPK protects LICs from metabolic stress and that combining AMPK inhibition with physiological metabolic stress potently suppresses AML by inducing oxidative stress and DNA damage.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Medula Óssea/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Estresse Oxidativo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/deficiência , Animais , Medula Óssea/enzimologia , Medula Óssea/patologia , Dano ao DNA , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Baço/metabolismo , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa