Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 823
Filtrar
1.
Cell ; 185(19): 3533-3550.e27, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113427

RESUMO

Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbß3 and α4ß1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbß3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4ß1.


Assuntos
Desenho de Fármacos , Integrina alfa4beta1 , Conformação Proteica , Serina , Água
2.
PLoS Pathog ; 19(11): e1011733, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943805

RESUMO

Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.


Assuntos
Plantas , Esfingolipídeos , Humanos , Animais , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Plantas/metabolismo , Fungos/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo , Mamíferos
3.
J Biol Chem ; 299(7): 104901, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302550

RESUMO

Collagen superfamily of proteins is a major component of the extracellular matrix. Defects in collagens underlie the cause of nearly 40 human genetic diseases in millions of people worldwide. Pathogenesis typically involves genetic alterations of the triple helix, a hallmark structural feature that bestows exceptional mechanical resistance to tensile forces and a capacity to bind a plethora of macromolecules. Yet, there is a paramount knowledge gap in understanding the functionality of distinct sites along the triple helix. Here, we present a recombinant technique to produce triple helical fragments for functional studies. The experimental strategy utilizes the unique capacity of the NC2 heterotrimerization domain of collagen IX to drive three α-chain selection and registering the triple helix stagger. For proof of principle, we produced and characterized long triple helical fragments of collagen IV that were expressed in a mammalian system. The heterotrimeric fragments encompassed the CB3 trimeric peptide of collagen IV, which harbors the binding motifs for α1ß1 and α2ß1 integrins. Fragments were characterized and shown to have a stable triple helix, post-translational modifications, and high affinity and specific binding of integrins. The NC2 technique is a universal tool for the high-yield production of heterotrimeric fragments of collagens. Fragments are suitable for mapping functional sites, determining coding sequences of binding sites, elucidating pathogenicity and pathogenic mechanisms of genetic mutations, and production of fragments for protein replacement therapy.


Assuntos
Colágeno Tipo IV , Integrinas , Multimerização Proteica , Animais , Humanos , Sítios de Ligação , Colágeno Tipo IV/química , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Integrinas/química , Integrinas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Mutação , Domínios Proteicos
4.
Int J Obes (Lond) ; 48(9): 1205-1215, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839985

RESUMO

Apolipoprotein E (APOE) is a multifunctional protein expressed by various cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, astrocytes, etc. Initially, APOE was discovered as an arginine-rich peptide within very-low-density lipoprotein, but it was subsequently found in triglyceride-rich lipoproteins in humans and other animals, where its presence facilitates the clearance of these lipoproteins from circulation. Recent epidemiolocal studies and experimental research in mice suggest a link between ApoE and obesity. The latest findings highlight the role of endogenous adipocyte ApoE in regulating browning of white adipose tissue, beige adipocyte differentiation, thermogenesis and energy homeostasis. This review focuses on the emerging evidence showing the involvement of ApoE in the regulation of obesity and its associated metabolic diseases.


Assuntos
Adipócitos , Apolipoproteínas E , Obesidade , Humanos , Obesidade/metabolismo , Animais , Adipócitos/metabolismo , Apolipoproteínas E/metabolismo , Camundongos , Termogênese/fisiologia , Metabolismo Energético/fisiologia
5.
New Phytol ; 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39494465

RESUMO

In Magnaporthe oryzae, the Pmk1 MAP kinase signaling pathway regulates appressorium formation, plant penetration, effector secretion, and invasive growth. While the Mst11-Mst7-Pmk1 cascade was characterized two decades ago, knowledge of its signaling in the intracellular network remains limited. In this study, we demonstrate that the endosomal surface scaffolds Pmk1 MAPK signaling and Msb2 activates Ras2 on endosomes in M. oryzae. Protein colocalization demonstrated that Msb2, Ras2, Cap1, Mst50, Mst11, Mst7, and Pmk1 attach to late endosomal membranes. Damage to the endosome-vacuole transport system influences Pmk1 phosphorylation. When Msb2 senses a plant signal, it internalizes and activates Ras2 on endosome membrane surfaces, transmitting the signal to Pmk1 via Mst11 and Mst7. Signal-sensing and delivery proteins are ubiquitinated and sorted for degradation in late endosomes and vacuoles, terminating signaling. Plant penetration and lowered intracellular turgor are required for the transition from late endosomes to vacuoles in appressoria. Our findings uncover an effective mechanism that scaffolds and controls Pmk1 MAPK signaling through endosomal-vacuolar transport, offering new knowledge for the cytological and molecular mechanisms by which the Pmk1 MAPK pathway modulates development and pathogenicity in M. oryzae.

6.
Cell Commun Signal ; 22(1): 19, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195499

RESUMO

The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.


Assuntos
Ascomicetos , Ciclo Celular , Autofagia , Parede Celular
7.
Cell Commun Signal ; 22(1): 362, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010102

RESUMO

Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.


Assuntos
Autofagia , Proteínas Fúngicas , Oryza , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Oryza/microbiologia , Virulência/genética , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Ascomicetos/genética , Ascomicetos/enzimologia , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo
8.
Cell Commun Signal ; 22(1): 222, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594767

RESUMO

Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.


Assuntos
Ascomicetos , Virulência , Proteínas , Ubiquitinação , Autofagia
9.
Arch Microbiol ; 206(8): 339, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958759

RESUMO

Cordyceps cicadae is recognized for its medicinal properties, attributed to bioactive constituents like polysaccharides and adenosine, which have been shown to improve kidney and liver functions and possess anti-tumor properties. Rho GTPase activating proteins (Rho GAPs) serve as inhibitory regulators of Rho GTPases in eukaryotic cells by accelerating the GTP hydrolysis of Rho GTPases, leading to their inactivation. In this study, we explored the function of the CcRga8 gene in C. cicadae, which encodes a Rho-type GTPase activating protein. Our study found that the knockout of CcRga8 resulted in a decrease in polysaccharide levels and an increase in adenosine concentration. Furthermore, the mutants exhibited altered spore yield and morphology, fruiting body development, decreased infectivity, reduced resistance to hyperosmotic stress, oxidative conditions, and cell wall inhibitors. These findings suggest that CcRga8 plays a crucial role in the development, stress response, and bioactive compound production of C. cicadae.


Assuntos
Cordyceps , Cordyceps/metabolismo , Cordyceps/genética , Cordyceps/crescimento & desenvolvimento , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Adenosina/metabolismo , Polissacarídeos/metabolismo , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Carpóforos/genética
10.
Org Biomol Chem ; 22(39): 7971-7975, 2024 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-39269007

RESUMO

The cyclisation mechanism of the fungal fusicoccane (FC)-type diterpene synthase (DTS) TadA was investigated by extensive isotopic labelling experiments, and the pH-dependency of the product selectivity of this enzyme was explored. These studies provide new insights into the cyclisation mechanisms of FC-type DTSs.


Assuntos
Alquil e Aril Transferases , Diterpenos , Diterpenos/química , Diterpenos/metabolismo , Alquil e Aril Transferases/metabolismo , Ciclização , Concentração de Íons de Hidrogênio , Estrutura Molecular
11.
J Nat Prod ; 87(5): 1338-1346, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38447084

RESUMO

Oxabornyl polyenes represent a unique group of polyketides characterized by a central polyene core flanked by a conserved oxabornyl moiety and a structurally diverse oxygen heterocyclic ring. They are widely distributed in fungi and possess a variety of biological activities. Due to the significant spatial separation between the two stereogenic ring systems, it is difficult to establish their overall relative configurations. Here, we isolated three oxabornyl polyenes, prugosenes A1-A3 (1-3), from Talaromyces sp. JNU18266-01. Although these compounds were first reported from Penicillium rugulosum, their overall relative and absolute configurations remained unassigned. By employing ozonolysis in combination with ECD calculations, we were able to establish their absolute configurations, and additionally obtained seven new chemical derivatives (4-10). Notably, through NMR data analysis and quantum chemical calculations, we achieved the structural revision of prugosene A2. Furthermore, prugosenes A1-A3 exhibited potent antiviral activity against the respiratory syncytial virus, with compound 1 displaying an IC50 value of 6.3 µM. Our study thus provides a valuable reference for absolute configuration assignment of oxabornyl polyene compounds.


Assuntos
Polienos , Polienos/química , Polienos/farmacologia , Estrutura Molecular , Talaromyces/química , Antivirais/farmacologia , Antivirais/química , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Humanos
12.
Bioorg Chem ; 152: 107726, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182256

RESUMO

Fusicoccane (FC)-type diterpenoids are a class of diterpenoids characterized by a unique 5-8-5 ring system and exhibit diverse biological activities. Recently, we identified a novel FC-type diterpene synthase MgMS, which produces a myrothec-15(17)-en-7-ol (1) hydrocarbon skeleton, however, its tailoring congeners have not been elucidated. Here, we discovered two additional gene clusters Bn and Np, each encoding a highly homologous terpene synthase to MgMS but distinct tailoring enzymes. Heterologous expression of the terpene synthases BnMS and NpMS yielded the same product as MgMS. Subsequent introduction of three P450 enzymes MgP450, BnP450 and NpP450 from individual gene clusters resulted in four new FC-type diterpenoids 2-5. Notably, MgP450 serves as the first enzyme responsible for hydroxylation of the C19 methyl group, whereas NpP450 functions as a multifunctional P450 enzyme involved in the oxidations at C5, C6, and C19 positions of the 5-8-5 tricyclic skeleton. C5 oxidation of the hydrocarbon skeleton 1 led to broadening of the NMR signals and incomplete spectra, which was resolved by high-temperature NMR spectral analysis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Diterpenos , Oxirredução , Diterpenos/química , Diterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Estrutura Molecular
13.
Int J Med Sci ; 21(7): 1302-1306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818474

RESUMO

Background: Hyperopia is a significant refractive error in children, often leading to vision impairment. This study aimed to investigate whether partial or full spectacle correction is benefit for hyperopia in preschool-aged children. Methods: A retrospective study was conducted on hyperopic children visited to teaching medical center outpatient clinic between October 2011 and October 2018, and were categorized into three groups: full correction, overcorrection, and undercorrection. The study was approved by the institutional ethical committee of Tri-Service General Hospital. Results: Following a minimum of one-year follow-up period, no statistically significant differences were observed in best-corrected visual acuity (BCVA) among children receiving full, over, or under spectacle correction. Notably, the overcorrection group exhibited a significant reduction in spherical equivalent (SE) compared to both the full and under correction groups, indicating a better SE with spectacle overcorrection. Conclusions: Spectacle overcorrection may offer potential benefits for enhancing SE in preschool children with hyperopia. Nevertheless, further investigation through randomized controlled trials is warranted to establish the validity of this approach and its impact on visual outcomes in this hyperopic pediatric population.


Assuntos
Óculos , Hiperopia , Acuidade Visual , Humanos , Hiperopia/terapia , Hiperopia/fisiopatologia , Estudos Retrospectivos , Pré-Escolar , Feminino , Masculino , Refração Ocular/fisiologia , Criança , Resultado do Tratamento , Seguimentos
14.
Clin Oral Implants Res ; 35(10): 1273-1285, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38860518

RESUMO

OBJECTIVES: To retrospectively assess the periodontal conditions of teeth adjacent to and contralateral to implants presenting with or without peri-implantitis, following non-surgical periodontal and peri-implant mechanical therapy. MATERIALS AND METHODS: One hundred and one patients with existing dental implants and chronic periodontitis, who underwent non-surgical periodontal and peri-implant mechanical therapy, were included. The periodontal clinical probing depth (PPD), gingival recession (GR), and bleeding on probing (BOP) were recorded at six sites around the adjacent (Adj-) teeth and the contralateral (CL-) teeth relative to the implant. The potential factors influencing the periodontal conditions of 316 teeth were analyzed by multivariate linear regression models with generalized estimating equation methods and α = .05. RESULTS: The PPD of Adj-teeth was significantly different from that of CL-teeth before and after non-surgical therapy when the implant was diagnosed with peri-implantitis (PI) (p < .05). The PPD of teeth was shown to be affected by neighboring implants diagnosed with peri-implantitis (ß = .825 mm, p < .001), teeth adjacent to implants (ß = .245 mm, p = .004), a molar tooth type (ß = .435 mm, p = .019), and non-surgical therapy (ß = -.522 mm, p < .001). CONCLUSIONS: Relatively compromised periodontal conditions at Adj-teeth after non-surgical PI therapy were detected. Therefore, clinicians should be aware that non-surgical therapy may be less successful at teeth adjacent to implants with PI.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Peri-Implantite/etiologia , Peri-Implantite/terapia , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Implantes Dentários/efeitos adversos , Adulto , Idoso , Índice Periodontal , Retração Gengival/etiologia , Periodontite Crônica/terapia , Periodontite Crônica/complicações , Periodontite/terapia , Periodontite/complicações , Periodontite/etiologia , Dente
15.
Mar Drugs ; 22(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786604

RESUMO

Marine sponges of the genus Spongia have proven to be unabated sources of novel secondary metabolites with remarkable scaffold diversities and significant bioactivities. The discovery of chemical substances from Spongia sponges has continued to increase over the last few years. The current work provides an up-to-date literature survey and comprehensive insight into the reported metabolites from the members of the genus Spongia, as well as their structural features, biological activities, and structure-activity relationships when available. In this review, 222 metabolites are discussed based on published data from the period from mid-2015 to the beginning of 2024. The compounds are categorized into sesquiterpenes, diterpenes, sesterterpenes, meroterpenes, linear furanoterpenes, steroids, alkaloids, and other miscellaneous substances. The biological effects of these chemical compositions on a vast array of pharmacological assays including cytotoxic, anti-inflammatory, antibacterial, neuroprotective, protein tyrosine phosphatase 1B (PTP1B)-inhibitory, and phytoregulating activities are also presented.


Assuntos
Poríferos , Poríferos/metabolismo , Poríferos/química , Animais , Humanos , Relação Estrutura-Atividade , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Metabolismo Secundário
16.
Mar Drugs ; 22(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39330283

RESUMO

There has been no specific review on the secondary metabolites from soft corals of the genus Capnella till now. In this work, all secondary metabolites from different species of the title genus were described. It covered the first work from 1974 to May 2024, spanning five decades. In the viewpoint of the general structural features, these chemical constituents were classified into four groups: sesquiterpenes, diterpenes, steroids, and lipids. Additionally, the 1H and 13C NMR data of these metabolites were provided when available in the literature. Among them, sesquiterpenes were the most abundant chemical compositions from soft corals of the genus Capnella. A variety of pharmacological activities of these compounds were evaluated, such as cytotoxic, antibacterial, antifungal, and anti-inflammatory activities. In addition, the chemical synthesis works of several representative sesquiterpenes were provided. This review aims to provide an up-to-date knowledge of the chemical structures, pharmacological activities, and chemical synthesis of the chemical constituents from soft corals of the genus Capnella.


Assuntos
Antozoários , Antozoários/química , Animais , Espectroscopia de Ressonância Magnética , Metabolismo Secundário , Humanos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Diterpenos/farmacologia , Diterpenos/química , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Esteroides/química , Esteroides/farmacologia
17.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542408

RESUMO

Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Septinas/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Citoesqueleto/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo , Regulação Fúngica da Expressão Gênica
18.
Angew Chem Int Ed Engl ; 63(38): e202407895, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38949843

RESUMO

The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and-according to a structural model-active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.


Assuntos
Diterpenos , Prótons , Diterpenos/metabolismo , Diterpenos/química , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/química , Teoria da Densidade Funcional , Domínio Catalítico
19.
Org Biomol Chem ; 21(4): 851-857, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602159

RESUMO

Fernane-type triterpenoids are a small group of natural products mainly found in plants and fungi with a wide range of biological activities. Polytolypin is a representative fernane-type triterpenoid from fungi and possesses potent antifungal activity. So far, biosynthesis of fungal-derived fernane-type triterpenoids has not been characterized, which hinders the expansion of their structural diversity using biosynthetic approaches. Herein, we identified the biosynthetic gene cluster of polytolypin and elucidated its biosynthetic pathway through heterologous expression in Aspergillus oryzae NSAR1, which involves a new triterpene cyclase for the biosynthesis of the hydrocarbon skeleton motiol, followed by multiple oxidations via three P450 enzymes. Moreover, two new triterpene cyclases for the biosynthesis of two other fernane-type skeletons isomotiol and fernenol were identified from fungi, and were individually co-expressed with the three P450 enzymes involved in polytolypin biosynthesis. These studies led to the generation of 13 fernane-type triterpenoids including eight new compounds, and two of them showed stronger antifungal activity towards Candida albicans FIM709 than polytolypin.


Assuntos
Antifúngicos , Triterpenos , Antifúngicos/farmacologia , Triterpenos/farmacologia , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Triterpenos Pentacíclicos , Vias Biossintéticas/genética
20.
Acta Pharmacol Sin ; 44(9): 1748-1767, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37095197

RESUMO

Circular RNAs (ciRNAs) are emerging as new players in the regulation of gene expression. However, how ciRNAs are involved in neuropathic pain is poorly understood. Here, we identify the nervous-tissue-specific ciRNA-Fmn1 and report that changes in ciRNA-Fmn1 expression in spinal cord dorsal horn neurons play a key role in neuropathic pain after nerve injury. ciRNA-Fmn1 was significantly downregulated in ipsilateral dorsal horn neurons after peripheral nerve injury, at least in part because of a decrease in DNA helicase 9 (DHX9), which regulates production of ciRNA-Fmn1 by binding to DNA-tandem repeats. Blocking ciRNA-Fmn1 downregulation reversed nerve-injury-induced reductions in both the binding of ciRNA-Fmn1 to the ubiquitin ligase UBR5 and the level of ubiquitination of albumin (ALB), thereby abrogating the nerve-injury-induced increase of ALB expression in the dorsal horn and attenuating the associated pain hypersensitivities. Conversely, mimicking downregulation of ciRNA-Fmn1 in naïve mice reduced the UBR5-controlled ubiquitination of ALB, leading to increased expression of ALB in the dorsal horn and induction of neuropathic-pain-like behaviors in naïve mice. Thus, ciRNA-Fmn1 downregulation caused by changes in binding of DHX9 to DNA-tandem repeats contributes to the genesis of neuropathic pain by negatively modulating UBR5-controlled ALB expression in the dorsal horn.


Assuntos
Neuralgia , RNA Circular , Camundongos , Animais , RNA Circular/metabolismo , Regulação para Baixo , DNA Helicases , Hiperalgesia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Neuralgia/etiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa