Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
EMBO Rep ; 25(3): 1282-1309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316900

RESUMO

UBE3A is a common genetic factor in ASD etiology, and transgenic mice overexpressing UBE3A exhibit typical autistic-like behaviors. Because AMPA receptors (AMPARs) mediate most of the excitatory synaptic transmission in the brain, and synaptic dysregulation is considered one of the primary cellular mechanisms in ASD pathology, we investigate here the involvement of AMPARs in UBE3A-dependent ASD. We show that expression of the AMPAR GluA1 subunit is decreased in UBE3A-overexpressing mice, and that AMPAR-mediated neuronal activity is reduced. GluA1 mRNA is trapped in the nucleus of UBE3A-overexpressing neurons, suppressing GluA1 protein synthesis. Also, SARNP, an mRNA nuclear export protein, is downregulated in UBE3A-overexpressing neurons, causing GluA1 mRNA nuclear retention. Restoring SARNP levels not only rescues GluA1 mRNA localization and protein expression, but also normalizes neuronal activity and autistic behaviors in mice overexpressing UBE3A. These findings indicate that SARNP plays a crucial role in the cellular and behavioral phenotypes of UBE3A-induced ASD by regulating nuclear mRNA trafficking and protein translation of a key AMPAR subunit.


Assuntos
Transtorno Autístico , Animais , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Transmissão Sináptica/fisiologia
2.
Synapse ; 78(4): e22304, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38896000

RESUMO

The goal of this report is to explore how K2P channels modulate axonal excitability by using the crayfish ventral superficial flexor preparation. This preparation allows for simultaneous recording of motor nerve extracellular action potentials (eAP) and intracellular excitatory junctional potential (EJP) from a muscle fiber. Previous pharmacological studies have demonstrated the presence of K2P-like channels in crayfish. Fluoxetine (50 µM) was used to block K2P channels in this study. The blocker caused a gradual decline, and eventually complete block, of motor axon action potentials. At an intermediate stage of the block, when the peak-to-peak amplitude of eAP decreased to ∼60%-80% of the control value, the amplitude of the initial positive component of eAP declined at a faster rate than that of the negative peak representing sodium influx. Furthermore, the second positive peak following this sodium influx, which corresponds to the after-hyperpolarizing phase of intracellularly recorded action potentials (iAP), became larger during the intermediate stage of eAP block. Finally, EJP recorded simultaneously with eAP showed no change in amplitude, but did show a significant increase in synaptic delay. These changes in eAP shape and EJP delay are interpreted as the consequence of depolarized resting membrane potential after K2P channel block. In addition to providing insights to possible functions of K2P channels in unmyelinated axons, results presented here also serve as an example of how changes in eAP shape contain information that can be used to infer alterations in intracellular events. This type of eAP-iAP cross-inference is valuable for gaining mechanistic insights here and may also be applicable to other model systems.


Assuntos
Potenciais de Ação , Astacoidea , Axônios , Fluoxetina , Neurônios Motores , Animais , Astacoidea/efeitos dos fármacos , Astacoidea/fisiologia , Fluoxetina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Axônios/efeitos dos fármacos , Axônios/fisiologia
3.
Synapse ; 76(7-8): e22234, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460585

RESUMO

4-aminopyridine (4-AP) is a potassium channel blocker that has been used to treat patients with multiple sclerosis and Lambert-Eaton disease. The concentration of this drug in the blood of patients was estimated to be in low or submicromolar range. Animal studies have shown that 4-AP at such low concentration selectively blocks a subset of channels in Kv1 or Kv3 families. The crayfish opener neuromuscular junction and ventral superficial flexor (VSF) preparations were used to examine functions of K+ channels blocked by low concentrations of 4-AP. At opener motor axons, intracellular recordings show that 4-AP could increase action potential (AP) amplitude, duration, and after-depolarization (ADP) at 10 µM. As 4-AP concentration was increased, in twofold steps, AP amplitude did not increase further up to 5 mM. AP duration and ADP increased significantly mainly in two concentration ranges, 10-50 µM and 1-5 mM. The effects of 50 µM 4-AP on the VSF were less consistent than that observed at the opener motor axons. 4-AP did not change AP amplitude of motor axons recorded with an extracellular electrode and change in AP repolarizing potential was observed in ∼25% of the axons. EPSP recorded simultaneously with AP showed an increase in amplitude with 4-AP treatment only in 30% of the axon-EPSP pairs. 4-AP also increased firing frequencies of ∼50% of axons. In four animals, 4-AP "awakened" the firing of APs from an axon that was silent before the drug. The mixture of positive and negative 4-AP effects summarized above was observed in the same VSF preparations in all cases (n = 8). We propose that there is a significant diversity in the density 4-AP-sensitive potassium channels among motor axons of the VSF. Functional significance in the differences of 4-AP sensitivity of the two motor systems is discussed.


Assuntos
4-Aminopiridina , Astacoidea , Canais de Potássio , 4-Aminopiridina/farmacologia , Potenciais de Ação , Animais , Astacoidea/fisiologia , Axônios , Canais de Potássio/fisiologia
4.
PLoS Pathog ; 15(8): e1007992, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381617

RESUMO

Genotype I (GI) virus has replaced genotype III (GIII) virus as the dominant Japanese encephalitis virus (JEV) in the epidemic area of Asia. The mechanism underlying the genotype replacement remains unclear. Therefore, we focused our current study on investigating the roles of mosquito vector and amplifying host(s) in JEV genotype replacement by comparing the replication ability of GI and GIII viruses. GI and GIII viruses had similar infection rates and replicated to similar viral titers after blood meal feedings in Culex tritaeniorhynchus. However, GI virus yielded a higher viral titer in amplifying host-derived cells, especially at an elevated temperature, and produced an earlier and higher viremia in experimentally inoculated pigs, ducklings, and young chickens. Subsequently we identified the amplification advantage of viral genetic determinants from GI viruses by utilizing chimeric and recombinant JEVs (rJEVs). Compared to the recombinant GIII virus (rGIII virus), we observed that both the recombinant GI virus and the chimeric rJEVs encoding GI virus-derived NS1-3 genes supported higher replication ability in amplifying hosts. The replication advantage of the chimeric rJEVs was lost after introduction of a single substitution from a GIII viral mutation (NS2B-L99V, NS3-S78A, or NS3-D177E). In addition, the gain-of-function assay further elucidated that rGIII virus encoding GI virus NS2B-V99L/NS3-A78S/E177E substitutions re-gained the enhanced replication ability. Thus, we conclude that the replication advantage of GI virus in pigs and poultry is the result of three critical NS2B/NS3 substitutions. This may lead to more efficient transmission of GI virus than GIII virus in the amplifying host-mosquito cycle.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/virologia , Mosquitos Vetores , Mutação , Proteínas não Estruturais Virais/genética , Viremia/transmissão , Animais , Galinhas , Culex , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/genética , Feminino , Genótipo , RNA Helicases/genética , Serina Endopeptidases/genética , Suínos , Replicação Viral
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206460

RESUMO

Clozapine is widely employed in the treatment of schizophrenia. Compared with that of atypical first-generation antipsychotics, atypical second-generation antipsychotics such as clozapine have less severe side effects and may positively affect obesity and blood glucose level. However, no systematic study of clozapine's adverse metabolic effects-such as changes in kidney and liver function, body weight, glucose and triglyceride levels, and retinopathy-was conducted. This research investigated how clozapine affects weight, the bodily distribution of chromium, liver damage, fatty liver scores, glucose homeostasis, renal impairment, and retinopathy in mice fed a high fat diet (HFD). We discovered that obese mice treated with clozapine gained more weight and had greater kidney, liver, and retroperitoneal and epididymal fat pad masses; higher daily food efficiency; higher serum or hepatic triglyceride, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine levels; and higher hepatic lipid regulation marker expression than did the HFD-fed control mice. Furthermore, the clozapine group mice exhibited insulin resistance, poorer insulin sensitivity, greater glucose intolerance, and less Akt phosphorylation; their GLUT4 expression was lower, they had renal damage, more reactive oxygen species, and IL-1 expression, and, finally, their levels of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and catalase) were lower. Moreover, clozapine reduced the thickness of retinal cell layers and increased iNOS and NF-κB expression; a net negative chromium balance occurred because more chromium was excreted through urine, and this influenced chromium mobilization, which did not help overcome the hyperglycemia. Our clozapine group had considerably higher fatty liver scores, which was supported by the findings of lowered adiponectin protein levels and increased FASN protein, PNPLA3 protein, FABP4 mRNA, and SREBP1 mRNA levels. We conclude that clozapine can worsen nonalcoholic fatty liver disease, diabetes, and kidney and retinal injury. Therefore, long-term administration of clozapine warrants higher attention.


Assuntos
Cromo/deficiência , Clozapina/farmacologia , Intolerância à Glucose/metabolismo , Nefropatias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Doenças Retinianas/metabolismo , Adipócitos/metabolismo , Animais , Biomarcadores , Pesos e Medidas Corporais , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/genética , Imunofluorescência , Expressão Gênica , Regulação da Expressão Gênica , Imuno-Histoquímica , Insulina/metabolismo , Nefropatias/etiologia , Fígado/metabolismo , Camundongos , Camundongos Obesos , Óxido Nítrico Sintase Tipo II , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças Retinianas/etiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
6.
Molecules ; 26(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808318

RESUMO

Liver disorders have been recognized as one major health concern. Fucoidan, a sulfated polysaccharide extracted from the brown seaweed Fucus serratus, has previously been reported as an anti-inflammatory and antioxidant. However, the discovery and validation of its hepatoprotective properties and elucidation of its mechanisms of action are still unknown. The objective of the current study was to investigate the effect and possible modes of action of a treatment of fucoidan against thioacetamide (TAA)-induced liver injury in male C57BL/6 mice by serum biochemical and histological analyses. The mouse model for liver damage was developed by the administration of TAA thrice a week for six weeks. The mice with TAA-induced liver injury were orally administered fucoidan once a day for 42 days. The treated mice showed significantly higher body weights; food intakes; hepatic antioxidative enzymes (catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD)); and a lower serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and C-reactive protein (CRP) levels. Additionally, a reduced hepatic IL-6 level and a decreased expression of inflammatory-related genes, such as cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) mRNA was observed. These results demonstrated that fucoidan had a hepatoprotective effect on liver injury through the suppression of the inflammatory responses and acting as an antioxidant. In addition, here, we validated the use of fucoidan against liver disorders with supporting molecular data.


Assuntos
Anti-Inflamatórios , Antioxidantes , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Polissacarídeos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Citocinas/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Tioacetamida/toxicidade
7.
J Neurophysiol ; 121(2): 480-489, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565960

RESUMO

We report a novel phenomenon produced by focused ultrasound (US) that may be important for understanding its effects on cell membranes. When a US burst (2.1 MHz, 1-mm focal diameter, 0.1-1 MPa) was focused on a motor axon of the crayfish neuromuscular junction, it consistently produced a fast hyperpolarization, which was followed or superseded by subthreshold depolarizations or action potentials in a stochastic manner. The depolarization persisted in the presence of voltage-gated channel blockers [1 µM TTX ( INa), 50 µM ZD7288 ( Ih), and 200 µM 4-aminopyridine ( IK)] and typically started shortly after the onset of a 5-ms US burst, with a mean latency of 3.35 ± 0.53 ms (SE). The duration and amplitude of depolarizations averaged 2.13 ± 0.87 s and 10.1 ± 2.09 mV, with a maximum of 200 s and 60 mV, respectively. The US-induced depolarization was always associated with a decrease in membrane resistance. By measuring membrane potential and resistance during the US-induced depolarization, the reversal potential of US-induced conductance ( gus) was estimated to be -8.4 ± 2.3 mV, suggesting a nonselective conductance. The increase in gus was 10-100 times larger than the leak conductance; thus it could significantly influence neuronal activity. This change in conductance may be due to stimulation of mechanoreceptors. Alternatively, US may perturb the lateral motion of phospholipids and produce nanopores, which then increase gus. These results may be important for understanding mechanisms underlying US-mediated modulation of neuronal activity and brain function. NEW & NOTEWORTHY We report a specific increase in membrane conductance produced by ultrasound (US) on neuronal membrane. When a 5-ms US tone burst was focused on a crayfish motor axon, it stochastically triggered either depolarization or a spike train. The depolarization was up to 60 mV in amplitude and 200 s in duration and therefore could significantly influence neuronal activity. Depolarization was still evoked by US burst in the presence of Na+ and Ca2+ channel blockers and had a reversal potential of -8.4 ± 2.3 mV, suggesting a nonselective permeability. US can be applied noninvasively in the form of a focused beam to deep brain areas through the skull and has been shown to modulate brain activity. Understanding the depolarization reported here should be helpful for improving the use of US for noninvasive modulation and stimulation in brain-related disease.


Assuntos
Axônios/efeitos da radiação , Potenciais da Membrana , Ondas Ultrassônicas , Animais , Astacoidea , Axônios/efeitos dos fármacos , Axônios/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Membrana Celular/efeitos da radiação , Bloqueadores dos Canais de Potássio/farmacologia , Pirimidinas/farmacologia , Tetrodotoxina/farmacologia
8.
Emerg Infect Dis ; 23(11): 1883-1886, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29048288

RESUMO

The virulence of genotype I (GI) Japanese encephalitis virus (JEV) is under debate. We investigated differences in the virulence of GI and GIII JEV by calculating asymptomatic ratios based on serologic studies during GI- and GIII-JEV endemic periods. The results suggested equal virulence of GI and GIII JEV among humans.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/virologia , Adulto , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/epidemiologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Taiwan/epidemiologia , Virulência
9.
Int J Mol Sci ; 18(9)2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895925

RESUMO

Bovine lactoferrin (bLF) presents in milk and has been shown to inhibit several viral infections. Effective drugs are unavailable for the treatment of dengue virus (DENV) infection. In this study, we evaluated the antiviral effect of bLF against DENV infection in vivo and in vitro. Bovine LF significantly inhibited the infection of the four serotypes of DENV in Vero cells. In the time-of-drug addition test, DENV-2 infection was remarkably inhibited when bLF was added during or prior to the occurrence of virus attachment. We also revealed that bovine LF blocks binding between DENV-2 and the cellular membrane by interacting with heparan sulfate (HS), dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN), and low-density lipoprotein receptors (LDLR). In addition, bLF inhibits DENV-2 infection and decreases morbidity in a suckling mouse challenge model. This study supports the finding that bLF may inhibit DENV infection by binding to the potential DENV receptors.


Assuntos
Moléculas de Adesão Celular/metabolismo , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Heparitina Sulfato/metabolismo , Lactoferrina/farmacologia , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de LDL/metabolismo , Animais , Antivirais/farmacologia , Bovinos , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Receptores Virais/efeitos dos fármacos , Células THP-1 , Células Vero , Ensaio de Placa Viral , Ligação Viral/efeitos dos fármacos
10.
J Neurophysiol ; 115(1): 617-21, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26561611

RESUMO

Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings did detect Na(+) current (INa) in most terminals. The INa exhibited a high threshold and fast activation rate. Local perfusion of Na(+)-free saline showed that terminal INa contributed to AP waveform by slightly accelerating the rising phase and increasing the peak amplitude. These findings suggest that terminal INa functions to "touch up" but not to generate APs.


Assuntos
Potenciais de Ação , Astacoidea/fisiologia , Junção Neuromuscular/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sódio/fisiologia , Animais , Feminino , Masculino
11.
J Undergrad Neurosci Educ ; 12(2): A140-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24693261

RESUMO

The crayfish ventral superficial flexor (VSF) is innervated by the ventral branch of the third nerve. This nerve and muscle system is tonic, and is responsible for posture control of the animal. The easy accessibility of the third nerve and its muscle fibers, along with its display of tonic activity in vitro, make this preparation ideal for observing axonal action potentials and synaptic responses. As a result, this preparation has often been adopted for undergraduate electrophysiology laboratories. This report describes application of a spike sorting procedure to simultaneously recorded traces from the third nerve and associated muscle fiber. This procedure allows for isolation of action potentials arising from each of the six axons in the third nerve. Separation of action potentials and their corresponding synaptic responses from large data sets, with sample sizes in the thousands, enables us to perform averaging and to analyze waveforms of action potentials and synaptic responses with a high resolution. With this high resolution approach, we document variations in the shape of action potentials in the third nerve and in synaptic potential in muscle fibers. The approach described here can be used for detailed study of the effects mediated by neuromodulators and drugs. An example of such an application is illustrated using 50 µM GABA. Several possible student projects using this approach are outlined and discussed.

12.
J Neurophysiol ; 109(1): 162-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23054602

RESUMO

At the crayfish opener neuromuscular junction, axons branch repeatedly before synapsing onto muscle fibers as varicosities. Excitability of these axons was examined with two-electrode current clamp before and after partial block of Na(+) channels with 1 nM tetrodotoxin. 4-Aminopyridine (200 µM) was added to homogenize nonuniformity in K(+) channel density. The impact of tetrodotoxin was evaluated in terms of action potential (AP) amplitude, rate of rise, and threshold. All three parameters were more severely affected at the secondary than the primary branching point (BP). Both BPs fired continuously during 1-s current steps before tetrodotoxin. After tetrodotoxin, the secondary BP fired only in brief bursts, whereas the primary BP still fired continuously. Despite this diminished excitability at the secondary BP, no failure in orthodromic AP conduction was observed. AP waveform at terminals (AP(f)) was examined with voltage indicators. For orthodromic APs, reduction in AP amplitude and prolongation of AP rise time in tetrodotoxin were more pronounced in terminals than at the secondary BP. For APs initiated at the secondary BP, AP(f) sometimes failed to show a spikelike waveform in tetrodotoxin. This degraded AP(f) was not due to averaging variable AP invasion into terminals, because the variance of AP(f) traces did not increase in tetrodotoxin. Tetrodotoxin applied in the absence of 4-aminopyridine showed an impact on the distal axon similar but less distinct than that recorded with 4-aminopyridine. In conclusion, the distal axon is more sensitive to tetrodotoxin than the proximal axon, such that AP waveform degrades as it propagates toward terminals in tetrodotoxin.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Axônios/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Potenciais de Ação/fisiologia , Animais , Astacoidea , Axônios/fisiologia , Cálcio/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Junção Neuromuscular/fisiologia , Canais de Sódio/fisiologia
13.
Ultrasound Med Biol ; 49(12): 2527-2536, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37758529

RESUMO

OBJECTIVE: Focused ultrasound (FUS) can modulate neuronal activity by depolarization or hyperpolarization. Although FUS-evoked depolarization has been studied extensively, the mechanisms underlying FUS-evoked hyperpolarization (FUSH) have received little attention. In the study described here, we developed a procedure using FUS to selectively hyperpolarize motor axons in crayfish. As a previous study had reported that these axons express mechano- and thermosensitive two-pore domain potassium (K2P) channels, we tested the hypothesis that K2P channels underlie FUSH. METHODS: Intracellular recordings from a motor axon and a muscle fiber were obtained simultaneously from the crayfish opener neuromuscular preparation. FUSH was examined while K2P channel activities were modulated by varying temperature or by K2P channel blockers. RESULTS: FUSH in the axons did not exhibit a coherent temperature dependence, consistent with predicted K2P channel behavior, although changes in the resting membrane potential of the same axons indicated well-behaved K2P channel temperature dependence. The same conclusion was supported by pharmacological data; namely, FUSH was not suppressed by K2P channel blockers. Comparison between the FUS-evoked responses recorded in motor axons and muscle fibers revealed that the latter exhibited very little FUSH, indicating that the FUSH was specific to the axons. CONCLUSION: It is not likely that K2P channels are the underlying mechanism for FUSH in motor axons. Alternative mechanisms such as sonophore and axon-specific potassium channels were considered. Although the sonophore hypothesis could account for electrophysiological features of axonal recordings, it is not consistent with the lack of FUSH in muscle fibers. An axon-specific and mechanosensitive potassium channel is also a possible explanation.


Assuntos
Astacoidea , Axônios , Animais , Junção Neuromuscular/fisiologia , Neurônios , Canais de Potássio/fisiologia , Fibras Musculares Esqueléticas
14.
Viruses ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140579

RESUMO

Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by the SFTS Virus (SFTSV), is a global health threat. SFTSV in Taiwan has only been reported in ruminants and wild animals. Thus, we aimed to investigate the infection statuses of dogs and cats, the animals with closer human interactions. Overall, the SFTSV RNA prevalence was 23% (170/735), with dogs showing a 25.9% (111/429) prevalence and cats at 19.3% (59/306) prevalence. Noticeably, the prevalence in stray animals (39.8% 77/193) was significantly higher than in domesticated ones (17.2%, 93/542). Among the four categories analyzed, the highest SFTSV prevalence was found in the stray dogs at 53.9% (120/193), significantly higher than the 24.2% prevalence noted in stray cats. In contrast, domesticated animals exhibited similar prevalence rates, with 17.1% for dogs and 17.2% for cats. It is noteworthy that in the domesticated animal groups, a significantly elevated prevalence (45%, 9/20) was observed among cats exhibiting thrombocytopenia compared to those platelet counts in the reference range (4.8%, 1/21). The high infection rate in stray animals, especially stray dogs, indicated that exposure to various outdoor environments influences the prevalence of infections. Given the higher human interaction with dogs and cats, there is a need for proactive measures to reduce the risk associated with the infection of SFTSV in both animals and humans.


Assuntos
Infecções por Bunyaviridae , Doenças do Gato , Doenças do Cão , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Animais , Gatos , Humanos , Cães , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/veterinária , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/veterinária , Taiwan/epidemiologia , Doenças do Gato/epidemiologia , Doenças do Cão/epidemiologia , Phlebovirus/genética , Animais Selvagens , Animais Domésticos
15.
J Neurophysiol ; 107(10): 2692-702, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22338023

RESUMO

Current-clamp recordings were made from the primary (1°) and secondary (2°) branching points (BPs) of axons at the crayfish neuromuscular junction. Action potential (AP) firing initiated by current injected at the 2° BP showed strong adaptation or high-frequency firing at threshold current, whereas AP firing frequency at the 1° BP exhibited a gradual rise with increasing current amplitude. The voltage threshold for AP (V(TH)) was higher at the 2° BP than the 1° BP. 4-Aminopyridine (4-AP) at 200 µM increased AP amplitude and duration at both BPs but reduced threshold current at the 2° BP more than at the 1° BP. This blocker lowered V(TH) at both BPs, but the difference between the BPs remained. Firing patterns evoked at the 2° BP became similar to those evoked at the 1° BP in 4-AP. Thus 4-AP-sensitive channels may be more concentrated in the distal axon and control AP initiation and firing patterns there. Orthodromic APs between the two BPs were also compared. There was no difference in AP amplitude between the two BPs, but AP half-width recorded at the 2° BP was longer than that at the 1° BP. AP duration at both BPs increased gradually, by ∼17%, during a 100-Hz, 500-ms train (in-train rise). Normalized AP half-widths revealed a smaller fractional in-train rise at the 2° BP. Thus, although distal APs were broader, AP duration there was under more stringent control than that of the proximal axon. 4-AP increased AP amplitude and duration of the entire orthodromic train and reduced the magnitude of the in-train rise in AP half-width at both BPs. However, this blocker did not uncover a clear difference between the two BPs. Thus 4-AP-sensitive channels concentrated in distal axon may be essential in preventing unintended firing and modulating AP waveform without interfering with orthodromic AP propagation.


Assuntos
4-Aminopiridina/farmacologia , Potenciais de Ação/fisiologia , Membrana Celular/fisiologia , Junção Neuromuscular/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Astacoidea , Axônios/efeitos dos fármacos , Axônios/fisiologia , Membrana Celular/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos
16.
Sci Rep ; 12(1): 14196, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987765

RESUMO

Infrared (IR) neuromodulation (INM) has been demonstrated as a novel modulation modality of neuronal excitability. However, the effects of pulsed IR light on synaptic transmission have not been investigated systematically. In this report, the IR light (2 µm) is used to directly modulate evoked synaptic transmission at the crayfish opener neuromuscular junction. The extracellularly recorded terminal action potentials (tAPs) and evoked excitatory postsynaptic currents (EPSCs) modulated by localized IR light illumination (500 ms, 3-13 mW) aimed at the synapses are analyzed. The impact of a single IR light pulse on the presynaptic Ca2+ influx is monitored with Ca2+ indicators. The EPSC amplitude is enhanced, and its rising phase is accelerated under relatively low IR light power levels and localized temperature rises. Increasing the IR light power reversibly suppresses and eventually blocks the EPSCs. Meanwhile, the synaptic delay, tAP amplitude, and presynaptic Ca2+ influx decrease monotonously with higher IR light power. It is demonstrated for the first time that IR light illumination has bidirectional effects on evoked synaptic transmission. These results highlight the efficacy and flexibility of using pulsed IR light to directly control synaptic transmission and advance our understanding of INM of neural networks.


Assuntos
Sinapses , Transmissão Sináptica , Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Junção Neuromuscular , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
17.
Biomed Opt Express ; 13(1): 374-388, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35154878

RESUMO

The excitatory and inhibitory effects of single and brief infrared (IR) light pulses (2 µm) with millisecond durations and various power levels are investigated with a custom-built fiber amplification system. Intracellular recordings from motor axons of the crayfish opener neuromuscular junction are performed ex vivo. Single IR light pulses induce a membrane depolarization during the light pulses, which is followed by a hyperpolarization that can last up to 100 ms. The depolarization amplitude is dependent on the optical pulse duration, total energy deposition and membrane potential, but is insensitive to tetrodotoxin. The hyperpolarization reverses its polarity near the potassium equilibrium potential and is barium-sensitive. The membrane depolarization activates an action potential (AP) when the axon is near firing threshold, while the hyperpolarization reversibly inhibits rhythmically firing APs. In summary, we demonstrate for the first time that single and brief IR light pulses can evoke initial depolarization followed by hyperpolarization on individual motor axons. The corresponding mechanisms and functional outcomes of the dual effects are investigated.

18.
Ultrasound Med Biol ; 48(10): 2040-2051, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35882572

RESUMO

We have previously identified a novel non-selective membrane conductance (gUS) opened by focused ultrasound (FUS) in crayfish motor axons. In the work described here, we studied gUS properties further by comparing FUS-evoked depolarization (FUSD) in control and hypotonic saline with 75% of control osmolarity. The FUS was a train of 20 FUS bursts (2.1 MHz and 50 µs per burst) delivered at 1 kHz. The amplitude, onset latency, frequency of occurrence and duration of FUSD were compared in a 15-min time window before and after switching to hypotonic saline. Significant increases were observed for amplitude (p < 0.001) and frequency of occurrence (p < 0.01) while the onset latency exhibited a significant decrease (p < 0.001). FUSD duration did not significantly differ. These results support predictions based on our hypothesis that gUS is mediated by opening of nanopores in the lipid bilayer and that stretching of axonal membrane caused by swelling at low osmolarity should increase the probability of nanopore formation under FUS. The FUSD parameters, in addition, exhibited time-dependent trends when the window of observation was expanded to 45 min in each saline. The statistical significance of amplitude and duration differed between 15- and 45-min time windows, indicating the presence of adaptive responses of axonal membrane to osmotic manipulation.


Assuntos
Astacoidea , Axônios , Animais , Concentração Osmolar , Ultrassonografia
19.
Vet Sci ; 8(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34564583

RESUMO

Imipramine is a tricyclic antidepressant that has been approved for treating depression and anxiety in patients and animals and that has relatively mild side effects. However, the mechanisms of imipramine-associated disruption to metabolism and negative hepatic, renal, and retinal effects are not well defined. In this study, we evaluated C57BL6/J mice subjected to a high-fat diet (HFD) to study imipramine's influences on obesity, fatty liver scores, glucose homeostasis, hepatic damage, distribution of chromium, and retinal/renal impairments. Obese mice receiving imipramine treatment had higher body, epididymal fat pad, and liver weights; higher serum triglyceride, aspartate and alanine aminotransferase, creatinine, blood urea nitrogen, renal antioxidant enzyme, and hepatic triglyceride levels; higher daily food efficiency; and higher expression levels of a marker of fatty acid regulation in the liver compared with the controls also fed an HFD. Furthermore, the obese mice that received imipramine treatment exhibited insulin resistance, worse glucose intolerance, decreased glucose transporter 4 expression and Akt phosphorylation levels, and increased chromium loss through urine. In addition, the treatment group exhibited considerably greater liver damage and higher fatty liver scores, paralleling the increases in patatin-like phospholipid domain containing protein 3 and the mRNA levels of sterol regulatory element-binding protein 1 and fatty acid-binding protein 4. Retinal injury worsened in imipramine-treated mice; decreases in retinal cell layer organization and retinal thickness and increases in nuclear factor κB and inducible nitric oxide synthase levels were observed. We conclude that administration of imipramine may result in the exacerbation of nonalcoholic fatty liver disease, diabetes, diabetic retinopathy, and kidney injury.

20.
Mar Pollut Bull ; 172: 112811, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34403924

RESUMO

In Taiwan, freshwater clams (Corbicula fluminea) and hard clams (Meretrix lusoria) are the most frequently raised shellfish in land-based pond aquaculture, but research on the accumulation of organochlorine pesticides (OCPs) in these shellfish is limited. We detected the levels of 14 OCPs in 62 shellfish from Taiwanese aquafarms by performing gas chromatography-tandem mass spectrometry. OCP residues were detected in 4.84% of the samples including readings of 0.04 mg/kg chlordane (in a freshwater clam), 0.03 mg/g p,p'-DDE (in a freshwater clam), and 0.02 mg/g p,p'-DDE (in a hard clam). However, the associated estimated daily intake values were less than the acceptable daily intake levels of chlordane and p,p'-DDE Therefore, the consumption of these shellfish presents no immediate health risks. Our findings contribute to food safety and serve as a reference for OCP screenings for aquatic shellfish.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Medição de Risco , Frutos do Mar , Taiwan , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa