RESUMO
Blocking the interaction between the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme II (hACE2) protein serves as a therapeutic strategy for treating COVID-19. Traditional Chinese medicine (TCM) treatments containing bioactive products could alleviate the symptoms of severe COVID-19. However, the emergence of SARS-CoV-2 variants has complicated the process of developing broad-spectrum drugs. As such, the aim of this study was to explore the efficacy of TCM treatments against SARS-CoV-2 variants through targeting the interaction of the viral spike protein with the hACE2 receptor. Antiviral activity was systematically evaluated using a pseudovirus system. Scutellaria baicalensis (S. baicalensis) was found to be effective against SARS-CoV-2 infection, as it mediated the interaction between the viral spike protein and the hACE2 protein. Moreover, the active molecules of S. baicalensis were identified and analyzed. Baicalein and baicalin, a flavone and a flavone glycoside found in S. baicalensis, respectively, exhibited strong inhibitory activities targeting the viral spike protein and the hACE2 protein, respectively. Under optimized conditions, virus infection was inhibited by 98% via baicalein-treated pseudovirus and baicalin-treated hACE2. In summary, we identified the potential SARS-CoV-2 inhibitors from S. baicalensis that mediate the interaction between the Omicron spike protein and the hACE2 receptor. Future studies on the therapeutic application of baicalein and baicalin against SARS-CoV-2 variants are needed.
Assuntos
COVID-19 , Flavonas , Humanos , SARS-CoV-2 , Scutellaria baicalensis , Glicoproteína da Espícula de Coronavírus , Angiotensinas , Ligação ProteicaRESUMO
Liver metabolic syndrome, which involves impaired hepatic glycogen synthesis, is persistently increased by exposure to environmental pollutants. Most studies have investigated the pathogenesis of liver damage caused by single metal species or pure organics. However, under normal circumstances, the pollutants that we are exposed to are usually chemical mixtures that accumulate over time. Sediments are long-term repositories for environmental pollutants due to their environmental cycles, which make them good samples for evaluating the effect of environmental pollutants on the liver via bioaccumulation. This study aimed to clarify the effects of sediment pollutants on liver damage. Our results indicate that industrial wastewater sediment (downstream) is more cytotoxic than sediments from other zones. Downstream sediment extract (DSE) causes hepatotoxicity, stimulates reactive oxygen species (ROS) generation, triggers mitochondrial dysfunction, induces cell apoptosis, and results in the release of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) proteins. Additionally, to elucidate the underlying mechanism by which sediment pollutants disturb hepatic glycogen synthesis, we investigated the effects of different sediment samples from different pollution situations on glycogen synthesis in liver cell lines. It was found that DSE induced multiple severe impairments in liver cells, and disturbed glycogen synthesis more than under other conditions. These impairments include decreased hepatic glycogen synthesis via inhibition and insulin receptor substrate 1 (IRS-1) /AKT /glycogen synthase kinase3ß (GSK3ß)-mediated glycogen synthase (GYS) inactivation. To our knowledge, this study provides the first detailed evidence of in vitro sediment-accumulated toxicity that interferes with liver glycogen synthesis, leading to hepatic cell damage through apoptosis.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Poluentes Ambientais , Humanos , Glicogênio Hepático/metabolismo , Glicogênio Hepático/farmacologia , Poluentes Ambientais/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Sintase/farmacologia , Fígado , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismoRESUMO
Diabetic nephropathy (DN) is a crucial metabolic health problem. The renin-angiotensin system (RAS) is well known to play an important role in DN. Abnormal RAS activity can cause the over-accumulation of angiotensin II (Ang II). Angiotensin-converting enzyme inhibitor (ACEI) administration has been proposed as a therapy, but previous studies have also indicated that chymase, the enzyme that hydrolyzes angiotensin I to Ang II in an ACE-independent pathway, may play an important role in the progression of DN. Therefore, this study established a model of severe DN progression in a db/db and ACE2 KO mouse model (db and ACE2 double-gene-knockout mice) to explore the roles of RAS factors in DNA and changes in their activity after short-term (only 4 weeks) feeding of a high-fat diet (HFD) to 8-week-old mice. The results indicate that FD-fed db/db and ACE2 KO mice fed an HFD represent a good model for investigating the role of RAS in DN. An HFD promotes the activation of MAPK, including p-JNK and p-p38, as well as the RAS signaling pathway, leading to renal damage in mice. Blocking Ang II/AT1R could alleviate the progression of DN after administration of ACEI or chymase inhibitor (CI). Both ACE and chymase are highly involved in Ang II generation in HFD-induced DN; therefore, ACEI and CI are potential treatments for DN.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Hormônios Peptídicos , Animais , Camundongos , Angiotensina II , Enzima de Conversão de Angiotensina 2/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antivirais , Quimases/genética , Nefropatias Diabéticas/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Camundongos Knockout , Sistema Renina-Angiotensina , Serina ProteasesRESUMO
COVID-19 is a highly transmittable respiratory illness caused by SARS-CoV-2, and acute lung injury (ALI) is the major complication of COVID-19. The challenge in studying SARS-CoV-2 pathogenicity is the limited availability of animal models. Therefore, it is necessary to establish animal models that can reproduce multiple characteristics of ALI to study therapeutic applications. The present study established a mouse model that has features of ALI that are similar to COVID-19 syndrome to investigate the role of ACE2 and the administration of the Chinese herbal prescription NRICM101 in ALI. Mice with genetic modifications, including overexpression of human ACE2 (K18-hACE2 TG) and absence of ACE2 (mACE2 KO), were intratracheally instillated with hydrochloric acid. The acid intratracheal instillation induced severe immune cell infiltration, cytokine storms, and pulmonary disease in mice. Compared with K18-hACE2 TG mice, mACE2 KO mice exhibited dramatically increased levels of multiple inflammatory cytokines (IL-6 and TNF-α) in bronchoalveolar lavage fluid, histological evidence of lung injury, and dysregulation of MAPK and MMP activation. In mACE2 KO mice, NRICM101 could ameliorate the disease progression of acid-induced ALI. In conclusion, the established mouse model provided an effective platform for researchers to investigate pathological mechanisms and develop therapeutic strategies for ALI, including COVID-19-related ALI.
RESUMO
The main objective of this study was to establish a human cell-based platform to assess the effects of sediment toxicity on oxidative damage and cell essential behaviour. Since sediment pollution has increased as a consequence of including but not limited to industrialisation, the contaminants accumulated in sediments have already led to human health concerns. The Hsinchu Science Park is one of the most prominent semiconductor manufacturing centres in the world, and the Ke-Ya River flows through Hsinchu Science Park and the Hsinchu urban district. Because semiconductor wastes potentially contribute to higher-than-normal rates of cancers, birth defects, and serious diseases, the quality assessment of the Ke-Ya River has prompted widespread concerns. While previous studies have shown an association between the degradation of fish populations and sediment pollutants, very little is known about the issues on human health. Herein, the effects of sediment from three sediment sampling sites of the Ke-Ya River on 11 different human cell lines were directly evaluated. The upstream represents the undeveloped zone, the middle-stream represents the household/industrial wastewater zone, and the downstream represents the accumulation zone. Our results indicated that the sediment pollution of the downstream Ke-Ya River was more cytotoxic than that of the middle stream and upstream. Downstream sediment extract (DSE) significantly increased reactive oxygen species (ROS) levels across all cell types. Accordingly, oxidative stress can trigger redox-sensitive pathways and alter essential biological processes such as cell viability, cell adhesion, and cell motility. Importantly, the MTT assay indicated that DSE significantly decreased the viability of brain, oral, lung, breast, liver, pancreatic, cervical, prostate, and colorectal cells. Furthermore, the adhesive ability and wound healing ability of most cells were greatly reduced in the presence of DSE compared to other conditions. Thus, this study shows the results of the first analyses completed on the sediment cytotoxicity in human cells, and stimulated ROS levels are crucial for cellular life. In future research, the detailed cause and effect mechanisms of the abundant ROS generated in DSE will be further investigated. We sincerely hope that our study provides a scientific basis for further investigations with a global perspective on public health challenges.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Masculino , Estresse Oxidativo , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
ABSTRACT: Metabolic disturbance in patients of amyotrophic lateral sclerosis is a rare presentation that might be related to disease progression and outcomes. Hypermetabolic status after major burn injury remains a critical issue in the modern medical care. Here, we present a rare case of a patient sporadic amyotrophic lateral sclerosis who suffered from minor burn injury (8% total body surface area), developing critical hyperosmolar hyperglycemic state during early hospitalization. Newly diagnosed diabetes is established and found related to the underlying disease of this patient. The accumulative metabolic alteration among vulnerable patients of amyotrophic lateral sclerosis and burn injury is noteworthy. Judicious monitoring of fluid and metabolic status helps to prevent the occurrence of acute hyperosmolar hyperglycemic state.
Assuntos
Esclerose Lateral Amiotrófica , Queimaduras , Coma Hiperglicêmico Hiperosmolar não Cetótico , Esclerose Lateral Amiotrófica/complicações , Queimaduras/complicações , Progressão da Doença , Humanos , Coma Hiperglicêmico Hiperosmolar não Cetótico/complicações , Coma Hiperglicêmico Hiperosmolar não Cetótico/diagnósticoRESUMO
Antrodia cinnamomea (AC) is a nutraceutical fungus and studies have suggested that AC has the potential to prevent or alleviate diseases. However, little is known about the AC-induced phenotypes on the intestine-liver axis and gut microbial alterations. Here, we performed two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-Biotyper to elaborate the AC-induced phenotypes on the intestine-liver axis and gut microbial distribution of C57BL/6 mice. The experimental outcomes showed that the hepatic density may increase by elevating hepatic redox regulation, lipid degradation and glycolysis-related proteins and alleviating cholesterol biosynthesis and transport-related proteins in C57BL/6 mice with AC treatment. Moreover, AC facilitates intestinal glycolysis, TCA cycle, redox and cytoskeleton regulation-related proteins, but also reduces intestinal vesicle transport-related proteins in C57BL/6 mice. However, the body weight, GTT, daily food/water intake, and fecal/urine weight were unaffected by AC supplementation in C57BL/6 mice. Notably, the C57BL/6-AC mice had a higher gut microbial abundance of Alistipes shahii (AS) than C57BL/6-Ctrl mice. In summary, the AC treatment affects intestinal permeability by regulating redox and cytoskeleton-related proteins and elevates the gut microbial abundance of AS in C57BL/6 mice that might be associated with increasing hepatic density and metabolism-related proteins of the liver in C57BL/6 mice. Our study provides an insight into the mechanisms of AC-induced phenotypes and a comprehensive assessment of AC's nutraceutical effect in C57BL/6 mice.
Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Polyporales , Proteoma/metabolismo , Animais , Hepatócitos/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BLRESUMO
Lung cancer is one of the leading causes of cancer-related death worldwide. The most common type of lung cancer is non-small cell lung cancer (NSCLC). When NSCLC is detected, patients are typically already in a metastatic stage. Metastasized cancer is a major obstacle of effective treatment and understanding the mechanisms underlying metastasis is critical to treat cancer. Herein, we selected an invasive subpopulation from the human lung cancer cell line A549 using the transwell system and named it as A549-I5. Invasive and migratory activities of this cell line were analysed using wound healing, invasion, and migration assays. In addition, epithelial-mesenchymal transition (EMT) markers, such as Snail 1, Twist, Vimentin, N-cadherin and E-cadherin, were assessed through immunoblotting. In comparison to A549 cells, the invasive A549-I5 lung cancer cells had enhanced invasiveness, motility and EMT marker expression. Proteomic analysis identified 83 significantly differentially expressed proteins in A549-I5 cells. These identified proteins were classified according to their cellular functions and most were involved in cytoskeleton, redox regulation, protein degradation and protein folding. In summary, our results provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis. SIGNIFICANCE OF THE STUDY: When NSCLC is detected, most patients are already in a metastatic stage. Herein, we selected an invasive subpopulation from a human lung cancer cell line which had increased EMT markers as well as high wound healing, invasion and migration abilities. Proteomic analysis identified numerous proteins associated with functions in cytoskeleton, redox regulation, protein degradation and protein folding that were differentially expressed in these cells. These results may provide potential diagnostic markers and therapeutic candidates for the treatment of NSCLC metastasis.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células A549 , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Proteínas de Neoplasias/genéticaRESUMO
More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.
Assuntos
Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Uridina Difosfato Glucose Desidrogenase/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Polimerização , Proteômica , RNA Interferente Pequeno/metabolismo , Cicatrização , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Cancer metastasis is a common cause of failure in cancer therapy. However, over 60% of oral cancer patients present with advanced stage disease, and the five-year survival rates of these patients decrease from 72.6% to 20% as the stage becomes more advanced. In order to manage oral cancer, identification of metastasis biomarker and mechanism is critical. In this study, we use a pair of oral squamous cell carcinoma lines, OC3, and invasive OC3-I5 as a model system to examine invasive mechanism and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes between OC3 and invasive OC3-I5. A proteomic study reveals that invasive properties alter the expression of 101 proteins in OC3-I5 cells comparing to OC3 cells. Further studies have used RNA interference technique to monitor the influence of progesterone receptor membrane component 1 (PGRMC1) protein in invasion and evaluate their potency in regulating invasion and the mechanism it involved. The results demonstrated that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, vimentin and vinculin was increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells. Moreover, in mouse model, PGRMC1 is shown to affect not only migration and invasion but also metastasis in vivo. Taken together, the proteomic approach allows us to identify numerous proteins, including PGRMC1, involved in invasion mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of oral cancer invasion.
Assuntos
Proliferação de Células/genética , Proteínas de Membrana/genética , Neoplasias Bucais/genética , Proteínas de Neoplasias/genética , Receptores de Progesterona/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Xenoenxertos , Humanos , Camundongos , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , ProteômicaRESUMO
A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. Retinal ganglion cells (RGCs) are believed to be important cells affected in the pathogenesis of diabetic retinopathy. Transforming growth factor-beta (TGF-ß) is a neuroprotective protein that helps to withstand various neuronal injuries. To investigate the potential roles and regulatory mechanisms of TGF-ß in hyperglycemia-triggered damage of RGCs in vitro, we established RGCs in 5.5, 25, 50, and 100 mM D-glucose supplemented media and focused on the TGF-ß-related oxidative stress pathway in combination with hydrogen peroxide (H2O2). Functional experiments showed that TGF-ß1/2 protein expression was upregulated in RGCs with hyperglycemia. The knockdown of TGF-ß enhanced the accumulation of reactive oxygen species (ROS), inhibited the cell proliferation rate, and reduced glutathione content in hyperglycemia. Furthermore, the results showed that the TGF-ß-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as aldehyde dehydrogenase 3A1 (ALDH3A1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), and hypoxia-inducible factor (HIF-1α). Summarizing, our results demonstrated that TGF-ß keeps RGCs from hyperglycemia-triggered harm by promoting the activation of the antioxidant pathway, suggesting a potential anti-diabetic therapy for the treatment of diabetic retinopathy.
Assuntos
Estresse Oxidativo/fisiologia , Células Ganglionares da Retina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/fisiologia , Fatores de Crescimento Transformadores/metabolismoRESUMO
Tetrandrine, a bisbenzylisoquinoline alkaloid, is extracted from the root of the Chinese herb Radix Stephania tetrandra S Moore. This compound has antitumor activity in different cancer cell types. In this study, the effects of tetrandrine on human oral cancer CAL 27 cells were examined. Results indicated that tetrandrine induced cytotoxic activity in CAL 27 cells. Effects were due to cell death by the induction of apoptosis and accompany with autophagy and these effects were concentration- and time-dependent manners. Tetrandrine induced apoptosis was accompanied by alterations in cell morphology, chromatin fragmentation, and caspase activation in CAL 27 cells. Tetrandrine treatment also induced intracellular accumulation of reactive oxygen species (ROS). The generation of ROS may play an important role in tetrandrine-induced apoptosis. Tetrandrine triggered LC3B expression and induced autophagy in CAL 27 cells. Tetrandrine induced apoptosis and autophagy were significantly attenuated by N-acetylcysteine pretreatment that supports the involvement of ROS production. Tetrandrine induced cell death may act through caspase-dependent apoptosis with Beclin-1-induced autophagy in human oral cancer cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 329-343, 2017.
Assuntos
Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Benzilisoquinolinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Cálcio/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologiaRESUMO
Glaucoma is a group of eye diseases that can cause vision loss and optical nerve damage. To investigate the protein expression alterations in various intraocular tissues (i.e., the cornea, conjunctiva, uvea, retina, and sclera) during ischemia-reperfusion (IR) injury, this study performed a proteomic analysis to qualitatively investigate such alterations resulting from acute glaucoma. The IR injury model combined with the proteomic analysis approach of two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to monitor the protein expression alterations in two groups of specimens (an IR injury group and a control group). The analysis results revealed 221 unique differentially expressed proteins of a total of 1481 proteins in the cornea between the two groups. In addition, 97 of 1206 conjunctival proteins, 90 of 1354 uveal proteins, 61 of 1180 scleral proteins, and 37 of 1204 retinal proteins were differentially expressed. These findings imply that different ocular tissues have different tolerances against IR injury. To sum up, this study utilized the acute glaucoma model combined with 2D-DIGE and MALDI-TOF MS to investigate the IR injury affected protein expression on various ocular tissues, and based on the ratio of protein expression alterations, the alterations in the ocular tissues were in the following order: the cornea, conjunctiva, uvea, sclera, and retina.
Assuntos
Glaucoma/etiologia , Glaucoma/metabolismo , Proteoma , Proteômica , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , Doença Aguda , Animais , Túnica Conjuntiva/metabolismo , Córnea/metabolismo , Modelos Animais de Doenças , Proteômica/métodos , Ratos , Reprodutibilidade dos Testes , Retina/metabolismo , Esclera/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial BidimensionalRESUMO
We report an Nd:YAG laser pumped by light emission diodes (LEDs) at 750 nm. With 1% output coupling from a linear cavity containing a 2-cm long Nd:YAG crystal, the laser generated 37.5 µJ pulse energy at 1064 nm with M2 = 1.1 when pumped by 2.73-mJ LED energy in a 1-ms pulse at a 10 Hz rate. The measured optical and slope efficiencies for this linear-cavity laser are 1.36, and 9%, respectively. With 1 and 5% output couplings from a Z-cavity containing the same laser crystal, the lasers generated 346 and 288 µJ pulse energy with an optical efficiency of 3.4 and 2.8% and slope efficiency of 6.6 and 14%, respectively, for the same 1-ms pump pulse repeating at a 10 Hz rate. At the highest output from the Z-cavity, the measured M2 for the beam is 3.6.
RESUMO
Tetrandrine is a bisbenzylisoquinoline alkaloid that was found in the Radix Stephania tetrandra S Moore. It had been reported to induce cytotoxic effects on many human cancer cells. In this study, we investigated the cytotoxic effects of tetrandrine on human oral cancer HSC-3 cells in vitro. Treatments of HSC-3 cells with tetrandrine significantly decreased the percentage of viable cells through the induction of autophagy and apoptosis and these effects are in concentration-dependent manner. To define the mechanism underlying the cytotoxic effects of tetrandrine, we investigated the critical molecular events known to regulate the apoptotic and autophagic machinery. Tetrandrine induced chromatin condensation, internucleosomal DNA fragmentation, activation of caspases-3, -8, and -9, and cleavage of poly (ADP ribose) polymerase (PARP) that were associated with apoptosis, and it also enhanced the expression of LC3-I and -II that were associated with the induction of autophagy in human squamous carcinoma cell line (HSC-3) cells. Tetrandrine induced autophagy in HSC-3 cells was significantly attenuated by bafilomycin A1 (inhibitor of autophagy) pre-treatment that confirmed tetrandrine induced cell death may be associated with the autophagy. In conclusion, we suggest that tetrandrine induced cell death may be through the induction of apoptosis as well as autophagy in human oral cancer HSC-3 cells via PARP, caspases/Becline I/LC3-I/II signaling pathways.
Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteína Beclina-1 , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Fragmentação do DNA , Humanos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de SinaisRESUMO
Gefitinib is the first-line chemotherapeutic drug for treating non-small cell lung cancer (NSCLC), which comprises nearly 85% of all lung cancer cases worldwide. However, most patients eventually develop drug resistance after 12-18 months of treatment. Hence, investigating the drug resistance mechanism and resistance-associated biomarkers is necessary. Two lung adenocarcinoma cell lines, PC9 and gefitinib-resistant PC9/Gef, were established for examining resistance mechanisms and identifying potential therapeutic targets. Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were used for examining global protein expression changes between PC9 and PC9/Gef. The results revealed that 164 identified proteins were associated with the formation of gefitinib resistance in PC9 cells. Additional studies using RNA interference showed that progesterone receptor membrane component 1 and pericentrin proteins have major roles in gefitinib resistance. In conclusion, the proteomic approach enabled identifying of numerous proteins involved in gefitinib resistance. The results provide useful diagnostic markers and therapeutic candidates for treating gefitinib-resistant NSCLC.
Assuntos
Adenocarcinoma/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Antígenos/genética , Antígenos/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gefitinibe , Inativação Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteômica/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Neuroendocrine cervical cancer is an aggressive but rare form of cervical cancer. The majority of neuroendocrine cervical cancer patients present with advanced-stage diseases. However, the limited numbers of neuroendocrine tumor markers are insufficient for clinical purposes. Thus, we used a proteomic approach combining lysine labeling 2D-DIGE and MALDI-TOF MS to investigate the biomarkers for neuroendocrine cervical cancer. By analyzing the global proteome alteration between the neuroendocrine cervical cancer line (HM-1) and non-neuroendocrine cervical cancer lines (CaSki cells, ME-180 cells, and Hela cells), we identified 82 proteins exhibiting marked changes between HM-1 and CaSki cells, and between ME-180 and Hela cells. Several proteins involved in protein folding, cytoskeleton, transcription control, signal transduction, glycolysis, and redox regulation exhibited significant changes in abundance. Proteomic and immunoblot analyses indicated respective 49.88-fold and 25-fold increased levels of transgelin in HM-1 cells compared with that in other non-neuroendocrine cervical cancer cell lines, implying that transgelin is a biomarker for neuroendocrine cervical cancer. In summary, we used a comprehensive neuroendocrine/non-neuroendocrine cervical cancer model based proteomic approach for identifying neuroendocrine cervical cancer markers, which might contribute to the prognosis and diagnosis of neuroendocrine cervical cancer.
Assuntos
Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Eletroforese em Gel Bidimensional/métodos , Tumores Neuroendócrinos/química , Proteômica/métodos , Neoplasias do Colo do Útero/química , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
This study investigated the discomfort glare produced by the high-brightness LED billboards in relation to four factors: flicker frequency, panel luminance, viewing angular sub-tense, and ambient illuminance. The results showed that visual comfort is not affected by ambient illuminance but by the other three factors. Also, interaction was found between luminance and viewing angle. The experimental data were curve fitted to construct visual comfort models of LED billboard displays. By modulating the operating conditions, comfort display with LED billboards can be achieved.
Assuntos
Publicidade/métodos , Ofuscação , Iluminação/instrumentação , Estimulação Luminosa/instrumentação , Semicondutores , Percepção Visual/fisiologia , Adulto , Comportamento do Consumidor , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Iluminação/métodos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Adulto JovemRESUMO
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is facilitated by its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme 2 (hACE2) receptor. This critical interaction facilitates viral entry and is a primary target for therapeutic intervention against COVID-19. However, it is difficult to fully optimize viral infection using existing protein-protein interaction methods. Herein, we introduce a nano-luciferase binary technology (NanoBiT)-based pseudoviral sensor designed to stimulate the dynamics of viral infection in both living cells and animals. Infection progression can be dynamically visualized via a rapid increase in luminescence within 3 h using an in vivo imaging system (IVIS). Inhibition of viral infection by baicalein and baicalin was evaluated using a NanoBiT-based pseudoviral sensor. These results indicate that the inhibitory efficacy of baicalein was strengthened by targeting the spike protein, whereas baicalin targeted the hACE2 protein. Additionally, under optimized conditions, baicalein and baicalin provided a synergistic combination to inhibit pseudoviral infection. Live bioluminescence imaging was used to evaluate the in vivo effects of baicalein and baicalin treatment on LgBiT-hACE2 mice infected with the BA.2-SmBiT spike pseudovirus. This innovative bioluminescent system functions as a sensitive and early-stage quantitative viral transduction in vitro and in vivo. This platform provides novel opportunities for studying the molecular biology of animal models.
Assuntos
Enzima de Conversão de Angiotensina 2 , Técnicas Biossensoriais , COVID-19 , Flavanonas , Flavonoides , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Animais , Técnicas Biossensoriais/métodos , Humanos , SARS-CoV-2/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/química , Flavanonas/farmacologia , Flavanonas/química , Camundongos , COVID-19/virologia , Antivirais/farmacologia , Antivirais/química , Tratamento Farmacológico da COVID-19 , Células HEK293RESUMO
Glutathione (GSH) is a major antioxidant in organisms. An alteration in GSH concentration has been implicated in a number of pathological conditions. Therefore, GSH sensing has become a critical issue. In this study, a disposable strip used for tyrosinase-modified electrochemical testing was fabricated for the detection of GSH levels in vivo. The system is based on tyrosinase as a biorecognition element and a screen-printed carbon electrode (SPCE) as an amperometric transducer. On the tyrosinase-SPCE strips, the oxidation reaction from catechol to o-quinone was catalyzed by tyrosinase. The tyrosinase-SPCE strips were modified with gold nanoparticles (AuNPs). In the presence of AuNPs of 25 nm diameter, the cathodic peak current of cyclic voltammetry (CV) was significantly enhanced by 5.2 fold. Under optimized conditions (250 µM catechol, 50 mM phosphate buffer, and pH 6.5), the linear response of the tyrosinase-SPCE strips ranged from 31.25 to 500 µM GSH, with a detection limit of approximately 35 µM (S/N > 3). The tyrosinase-SPCE strips have been used to detect real samples of plasma and tissue homogenates in a mouse experiment. The mice were orally administrated with N-acetylcysteine (NAC) 100 mg kg-1 once a day for 7 days; the plasma GSH significantly enhanced 2.8 fold as compared with saline-treated mice (1123 vs. 480 µM µg-1 protein). NAC administration also could alleviate the adverse effect of GSH reduction in the mice treated with doxorubicin.