Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Int J Cancer ; 148(12): 2974-2981, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33554326

RESUMO

The role of hepatitis E virus (HEV) in developing hepatocellular carcinoma (HCC) is unclear. Our study aimed to investigate the role of HE infection in HCC development and the effect of hepatitis B virus (HBV) and HEV coinfection on HCC risk. A hospital-based case-control study was conducted. A total of 474 eligible HCC cases and 586 control patients were successfully recruited. The fasting venous blood was collected from the patients at the first visited to hospital and HBV infection and HEV infection were examined within 5 days. Crude and adjusted odd ratios (ORs) with 95% confidence interval (95% CI) were estimated by using logistic regression model. HBV infection (OR: 63.10, 95% CI: 42.02-97.26) rather than HEV infection (OR: 1.08, 95% CI: 0.721-1.65) was associated with an increased risk of HCC after adjustment for confounders. The association between HBV infection and HCC risk was more remarkable in male (OR: 72.61, 95% CI: 45.10-121.38) than in female (OR: 61.89, 95% CI: 25.74-169.26). In comparison with patients who infected with neither HEV nor HBV, those who infected with only HBV (OR: 69.62, 95% CI: 40.90-123.52) and who coinfected with HEV and HBV (OR: 67.48, 95% CI:37.23-128.19) were significantly associated with an increased risk after adjustment for potential confounders. The results showed that HBV infection rather than HEV infection was associated with an increased risk of HCC, and the HEV infection may alleviate the promoting impact of HBV on HCC development.


Assuntos
Carcinoma Hepatocelular/epidemiologia , Hepatite B/epidemiologia , Hepatite E/epidemiologia , Neoplasias Hepáticas/epidemiologia , Adulto , Idoso , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , China/epidemiologia , Feminino , Hepatite B/complicações , Hepatite E/complicações , Humanos , Neoplasias Hepáticas/virologia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Caracteres Sexuais
2.
J Vasc Res ; 56(4): 191-203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31390638

RESUMO

BACKGROUND: Ca2+ plays an important role in the regulation of vasoconstriction. Ca2+ signaling is regulated by a number of Ca2+-handling proteins. However, whether differences in Ca2+ handling affect the regulation of vasoconstriction in different arteries remains elusive. OBJECTIVE: To determine whether differences in Ca2+ handling affect the response to vasoconstrictors in different arteries. METHODS: Arterial ring contraction was measured using a Multi Myograph System. Vascular smooth muscle cells (VSMCs) were digested with type 2 collagenase in DMEM, then intracellular calcium concentration was measured with the Ca2+ probe fluo-4/AM in the isolated cells. Calcium-related proteins were assayed by Western blotting. RESULTS: Phenylephrine did not induce -coronary arterial contraction. There were differences in -5-hydroxytryptamine, 9,11-dideoxy-11a,9a-epoxymethano-prostaglandin F2a, and endothelin 1-induced vasoconstriction in different solutions between coronary and renal arteries. Vasoconstrictions in the presence of Bay K8644 were stronger in coronary than in renal arteries. Store-operated calcium (SOC) channels could mediate Ca2+ influx in VSMCs of both groups. SOC channels did not participate in the contraction of coronary arteries. In addition, there were significant differences in the expressions of receptors and ion channels between the two groups. CONCLUSIONS: Ca2+ handling contributed to the different responses to vasoconstrictors between coronary and renal arteries.


Assuntos
Sinalização do Cálcio , Cálcio , Vasos Coronários/metabolismo , Artéria Renal/metabolismo , Vasoconstrição , Animais , Sinalização do Cálcio/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Técnicas In Vitro , Masculino , Ratos Wistar , Artéria Renal/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
3.
Clin Exp Pharmacol Physiol ; 46(7): 643-651, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30907443

RESUMO

Thromboxane A2 (TXA2 ) has been implicated in the pathogenesis of vascular complications, but the underlying mechanism remains unclear. The contraction of renal arterial rings in mice was measured by a Multi Myograph System. The intracellular calcium concentration ([Ca2+ ]i ) in vascular smooth muscle cells (VSMCs) was obtained by using a fluo-4/AM dye and a confocal laser scanning microscopy. The results show that the U46619-induced vasoconstriction of renal artery was completely blocked by a TXA2 receptor antagonist GR32191, significantly inhibited by a selective phospholipase C (PI-PLC) inhibitor U73122 at 10 µmol/L and partially inhibited by a Phosphatidylcholine - specific phospholipase C (PC-PLC) inhibitor D609 at 50 µmol/L. Moreover, the U46619-induced vasoconstriction was inhibited by a general protein kinase C (PKC) inhibitor chelerythrine at 10 µmol/L, and a selective PKCδ inhibitor rottlerin at 10 µmol/L. In addition, the PKC-induced vasoconstriction was partially inhibited by a Rho-kinase inhibitor Y-27632 at 10 µmol/L and was further completely inhibited together with a putative IP3 receptor antagonist and store-operated Ca2+ (SOC) entry inhibitor 2-APB at 100 µmol/L. On the other hand, U46619-induced vasoconstriction was partially inhibited by L-type calcium channel (Cav1.2) inhibitor nifedipine at 1 µmol/L and 2-APB at 50 and 100 µmol/L. Last, U46619-induced vasoconstriction was partially inhibited by a cell membrane Ca2+ activated C1- channel blocker 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) at 50 and 100 µmol/L. Our results suggest that the U46619-induced contraction of mouse intrarenal arteries is mediated by Cav1.2 and SOC channel, through the activation of thromboxane-prostanoid receptors and its downstream signaling pathway.


Assuntos
Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Artérias/efeitos dos fármacos , Artérias/fisiologia , Vasoconstrição/efeitos dos fármacos , Animais , Canais de Cálcio/metabolismo , Canais de Cloreto/antagonistas & inibidores , Rim/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipases Tipo C/metabolismo , Quinases Associadas a rho/metabolismo
4.
BMC Cardiovasc Disord ; 16: 41, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879576

RESUMO

BACKGROUND: In the early stage of diabetes, the cardiac ejection fraction is preserved, despite the existence of the subclinical cardiac dysfunction to some extent. However, the detailed phenotype of this dysfunction and the underlying mechanism remain unclear. To improve our understanding of this issue, we used low-dose STZ and high-fat diet to induce type 2 diabetic models in rats. The effects and the mechanism associated with the early stages of the disease were analyzed. METHODS: The type 2 diabetic mellitus (T2DM) in SD rats were induced through 30 mg/kg STZ and high-fat diet. Two-dimensional spackle-tracking echocardiography (STE) and the dobutamine test were performed to examine the cardiac function. Calcium transients of left ventricular myocytes were detected and the related intracellular signalling factors were analyzed by western blotting. RESULTS: After 6-weeks, T2DM rats in left ventricular (LV) diastole showed decreased global and segment strain(S) levels (P < 0.05), both in the radial and circumferential directions. Strain rate (Sr) abatement occurred in three segments in the radial and circumferential directions (P < 0.05), and the radial global Sr also decreased (P < 0.05). In the systolic LV, radial Sr was reduced, except the segment of the anterior septum, and the Sr of the lateral wall and post septum decreased in the circumferential direction (P < 0.05). Conventional M-mode echocardiography failed to detect significant alterations of cardiac performance between the two groups even after 12 weeks, and the decreased ejection fraction (EF%), fractional shortening (FS%) and end-systolic diameters (ESD) could be detected only under stress conditions induced by dobutamine (P < 0.05). In terms of calcium transients in cardiac myocytes, the Tpeak in model rats at 6 weeks was not affected, while the Tdecay1/2 was higher than that of the controls (P < 0.05), and both showed a dose-dependent delay after isoproterenol treatment (P < 0.05). Western blot analysis showed that in 6-week T2DM rats, myocardial p-PLB expression was elevated, whereas p-CaMKII, p-AMPK and Sirt1 were significantly down-regulated (P < 0.05). CONCLUSION: A rat model of T2DM was established by low dose STZ and a high-fat diet. LV deformation was observed in the early stages of T2DM in association with the delay of Ca(2+) transients in cardiomyocytes due to the decreased phosphorylation of CaMKII. Myocardial metabolism remodeling might contribute to the early LV function and calcium transportation abnormalities.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Dieta Hiperlipídica , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Western Blotting , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/etiologia , Modelos Animais de Doenças , Ecocardiografia , Ecocardiografia sob Estresse , Eletroforese em Gel de Poliacrilamida , Ventrículos do Coração/citologia , Ventrículos do Coração/diagnóstico por imagem , Immunoblotting , Fosfoproteínas/metabolismo , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sirtuína 1/metabolismo
5.
J Cell Mol Med ; 19(3): 608-19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583328

RESUMO

Cyclins/retinoblastoma protein (pRb) pathway participates in cardiomyocyte hypertrophy. MicroRNAs (miRNAs), the endogenous small non-coding RNAs, were recognized to play significant roles in cardiac hypertrophy. But, it remains unknown whether cyclin/Rb pathway is modulated by miRNAs during cardiac hypertrophy. This study investigates the potential role of microRNA-16 (miR-16) in modulating cyclin/Rb pathway during cardiomyocyte hypertrophy. An animal model of hypertrophy was established in a rat with abdominal aortic constriction (AAC), and in a mouse with transverse aortic constriction (TAC) and in a mouse with subcutaneous injection of phenylephrine (PE) respectively. In addition, a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocyte and based on Ang-II-induced neonatal mouse ventricular cardiomyocyte respectively. We demonstrated that miR-16 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes in rats and mice. Overexpression of miR-16 suppressed rat cardiac hypertrophy and hypertrophic phenotype of cultured cardiomyocytes, and inhibition of miR-16 induced a hypertrophic phenotype in cardiomyocytes. Expressions of cyclins D1, D2 and E1, and the phosphorylated pRb were increased in hypertrophic myocardium and hypertrophic cardiomyocytes, but could be reversed by enforced expression of miR-16. Cyclins D1, D2 and E1, not pRb, were further validated to be modulated post-transcriptionally by miR-16. In addition, the signal transducer and activator of transcription-3 and c-Myc were activated during myocardial hypertrophy, and inhibitions of them prevented miR-16 attenuation. Therefore, attenuation of miR-16 provoke cardiomyocyte hypertrophy via derepressing the cyclins D1, D2 and E1, and activating cyclin/Rb pathway, revealing that miR-16 might be a target to manage cardiac hypertrophy.


Assuntos
Cardiomegalia/genética , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Ciclinas/metabolismo , MicroRNAs/genética , Animais , Aorta Abdominal/cirurgia , Linhagem Celular , Ciclina D1/biossíntese , Ciclina D2/biossíntese , Ciclinas/biossíntese , Modelos Animais de Doenças , Ativação Enzimática , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Miócitos Cardíacos/patologia , Fenilefrina/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-myc , Ratos , Ratos Sprague-Dawley , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição STAT3/metabolismo
6.
Int J Clin Pharmacol Ther ; 53(8): 658-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26104033

RESUMO

OBJECTIVE: This study was designed to evaluate the pharmacokinetics (PK) and safety of eptifibatide in healthy Chinese volunteers and provide information for the further study in the Chinese population. METHODS: 30 healthy volunteers (15 male) were enrolled in the study and divided into three dose groups (45 µg x kg⁻¹, 90 µg x kg⁻¹, and 180 µg x kg⁻¹). Plasma and urine samples were drawn after one single-bolus administration and measured by LC-MS/MS. The plasma and urine data were analyzed simultaneously by the population approach using the NONMEM software and evaluated by the visual predicted check (VPC) and bootstraping. The PK profiles of dose regimens approved for a Western population in the Chinese population were simulated. RESULTS: A two-compartment model adequately described the PK profiles of eptifibatide. The clearance (CL) and the distribution volume (V1) of the central compartment were 0.128 L x h⁻¹ x kg⁻¹ and 0.175 L x kg⁻¹, respectively. The clearance (Q) and V2of the peripheral compartment were 0.0988 L x h⁻¹ x kg⁻¹ and 0.147 L x kg⁻¹, respectively. The elimination fraction from plasma to urine (F0) was 17.2%. No covariates were found to have a significant effect. Inter-individual variabilites were all within 33.9%. The VPC plots and bootstrap results indicated good precision and prediction of the model. The simulations of the approved regimens in the Chinese population showed much lower steady-state concentrations than the target concentration obtained from the Western clinical trials. No severe safety events were found in this study. CONCLUSIONS: The PK model of eptifibatide was established and could provide PK information for further studies in the Chinese population.


Assuntos
Povo Asiático , Simulação por Computador , Modelos Biológicos , Peptídeos/administração & dosagem , Peptídeos/farmacocinética , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/farmacocinética , Ocidente , População Branca , Adolescente , Adulto , Área Sob a Curva , China , Cromatografia Líquida , Cálculos da Dosagem de Medicamento , Eptifibatida , Feminino , Meia-Vida , Voluntários Saudáveis , Humanos , Masculino , Taxa de Depuração Metabólica , Segurança do Paciente , Peptídeos/efeitos adversos , Peptídeos/sangue , Peptídeos/urina , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/sangue , Inibidores da Agregação Plaquetária/urina , Medição de Risco , Software , Espectrometria de Massas em Tandem , Adulto Jovem
7.
J Cell Physiol ; 229(5): 580-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24122208

RESUMO

Despite the fact that tissue engineered heart valves (TEHV) hold great promise for heart valve disease treatment, one of the challenges is to find suitable seeding cells. Bone marrow derived mesenchymal stem cells (MSCs) were considered to be one of the best seed cell sources. In this study we propose a novel approach to promote stem cell differentiation into the seed cells of TEHV, valvular interstitial cells (VICs). Newly induced MSCs (iMSCs) were created from a co-culture niche in which healthy human donor derived MSCs were co-cultured with cardiac fibroblasts (H9C2 cell line). Then iMSCs were transfected with either a mock vector (iMSCs(mock) ) as controls or with a vector that overexpresses thefibroblast inducible factor 14 (Fn14) gene (iMSCs(Fn14) ). Immunofluorescence staining was performed to assay VIC differentiation. Western blot analysis was performed to analyze the involved signaling pathway. The results demonstrate that the expression of α-smooth muscle actin (SMA) was significantly higher in iMSCs(Fn14) as compared with iMSC(mock) , and MSC, and also had higher co-alignment of α-actinin and stress fiber (F-actin) in bundles. Additionally, increased biosynthesis of extracellular matrix (ECM) proteins including collagen I, collagen III, and fibronection were observed in iMSCs(Fn14) in comparison with iMSCs(mock) . These data observed in iMSCs(Fn14) were in accordance with VIC phenotype from normal heart valves. In addition, the PI3K/Akt signaling pathway was activated in iMSCs(Fn14) which allowed higher Akt phosphorylation (p-Akt) levels and SMA levels, whereas, it was attenuated by LY294002 (PI3K/Akt inhibitor). These new findings of the effect of Fn14 on VIC-like cell differentiation may provide a novel therapeutic strategy for heart valve disease treatment.


Assuntos
Diferenciação Celular/fisiologia , Valvas Cardíacas/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/metabolismo , Linhagem Celular , Técnicas de Cocultura , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fibroblastos/citologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais/fisiologia , Receptor de TWEAK , Engenharia Tecidual , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
8.
Exp Physiol ; 98(1): 172-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22848081

RESUMO

The T-type Ca(2+) current (I(Ca,T)) plays an important role in the pathogenesis of atrial fibrillation (AF). The present study sought to investigate the role of macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, in the regulation of T-type Ca(2+) channels (TCCs) in atrial myocytes. We used the whole-cell voltage-clamp technique and biochemical assays to study the regulation and expression of I(Ca,T) in atrial myocytes. Gene levels of the α1G and α1H subunit of TCCs were decreased in human atrial tissue of patients with AF. In cultured atrium-derived myocytes (HL-1 cells), mouse recombinant MIF (20 or 40 nm, 24 h) suppressed peak I(Ca,T) in a concentration-dependent manner, impaired the voltage-dependent activation of I(Ca,T) and downregulated TCC α1G and α1H mRNA. The Src inhibitors genistein and PP1 significantly enhanced I(Ca,T). The reduction of I(Ca,T) and TCC subunit mRNA induced by recombinant MIF could be reversed by genistein and PP1. The TCC α1G associated with Src in HL-1 cells and mouse cardiomycytes. Macrophage migration inhibitory factor is involved in the pathogenesis of AF, probably by decreasing the T-type calcium current in atrium-derived myocytes through impairment of channel function and activation of c-Src kinases, representing a potential pathogenic mechanism in atrial fibrillation.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Adulto , Idoso , Animais , Fibrilação Atrial , Proteína Tirosina Quinase CSK , Linhagem Celular , Feminino , Genisteína/farmacologia , Átrios do Coração/citologia , Humanos , Oxirredutases Intramoleculares/farmacologia , Fatores Inibidores da Migração de Macrófagos/farmacologia , Masculino , Camundongos , Pessoa de Meia-Idade , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteínas Recombinantes/farmacologia , Quinases da Família src/biossíntese
9.
Hepatobiliary Pancreat Dis Int ; 12(2): 204-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23558076

RESUMO

BACKGROUND: KRAS mutation plays an important role in the pathogenesis of pancreatic cancer. However, the role of wild-type KRAS in the progression of pancreatic cancer remains unknown. The present study was to investigate the expression of the Ras GTPase activating protein (DAB2IP) in pancreatic cancer and its clinical significance. METHODS: The expression of DAB2IP in pancreatic cancer cell lines and normal human pancreatic ductal epithelial cells was analyzed by Western blotting and real-time quantitative reverse transcription-PCR (qRT-PCR). The KRAS mutational types of pancreatic cancer tissues obtained from pancreatic cancer patients (n=20) were also analyzed. Subsequently, DAB2IP expression was detected in pancreatic cancer tissues, adjacent and normal pancreatic tissues (n=2) by immunohistochemistry, and the relationship between DAB2IP expression and the clinical characteristics of patients was evaluated. RESULTS: Western blotting and qRT-PCR results showed that DAB2IP expression in pancreatic cancer cells with wild-type KRAS was lower than that in those with mutation-type KRAS and normal human pancreatic ductal epithelial cells (P<0.05). Immunohistochemistry showed that DAB2IP expression was lower in pancreatic cancer tissues than that in adjacent and normal pancreatic tissues (Z=-4.000, P=0.000). DAB2IP expression was lower in pancreatic cancer patients with the wild-type KRAS gene than that in those with KRAS mutations (WilcoxonW=35.000, P=0.042). Furthermore, DAB2IP expression in patients with perineurial invasion was lower than that in those without invasion (WilcoxonW=71.500, P=0.028). DAB2IP expression was lower in patients with more advanced stage than that in those with early clinical stage (WilcoxonW=54.000, P=0.002). CONCLUSIONS: DAB2IP expression was reduced in patients with pancreatic cancer compared with those with no cancer. DAB2IP expression was correlated with the KRAS gene, perineurial invasion and clinical stage of the disease. Our data indicated that DAP2IP expression can be used as a potential prognostic indicator and a promising molecular target for therapeutic intervention in patients with pancreatic cancer.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas ras/genética , Adulto , Idoso , Análise de Variância , Western Blotting , Linhagem Celular Tumoral , Análise Mutacional de DNA , Regulação para Baixo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/patologia , Prognóstico , Proteínas Proto-Oncogênicas p21(ras) , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ativadoras de ras GTPase/genética
10.
Pharmacogenet Genomics ; 22(3): 176-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198820

RESUMO

OBJECTIVE: Compared with genetic factors, drug interactions are largely unexplored in pharmacogenetic studies. This study sought to systematically investigate the effects of VKORC1, STX4A, CYP2C9, CYP4F2, CYP3A4, and GGCX gene polymorphisms and interacting drugs on warfarin maintenance dose. METHODS: A retrospective study of 845 Chinese patients after heart valve replacement receiving long-term warfarin maintenance therapy was conducted. Thirteen polymorphisms in the six genes were genotyped, and 36 drugs that may interact with warfarin were investigated. RESULTS: Single-nucleotide polymorphism association analysis showed that VKORC1, CYP2C9 and CYP4F2 variations were highly associated with the warfarin maintenance dose. Among 36 drugs that may interact with warfarin, fluconazole, amiodarone, and omeprazole were associated with the requirement for 45.8, 16.7, and 16.7% lower median warfarin dose (all P<0.05 with a false discovery rate <0.05). The final pharmacogenetic equation explained 43.65% of interindividual variation of warfarin maintenance dose with age, body surface area, VKORC1 g.3588G>A, CYP2C9*3, CYP4F2 c.1297G>A, amiodarone, fluconazole, and diltiazem accounting for 1.97, 2.74, 24.12, 3.94, 1.64, 5.92, 2.47, and 0.84% of variation. CONCLUSION: The present study indicated that VKORC1, CYP4F2, and CYP2C9 genotypes and interacting drugs had a significant impact on the warfarin maintenance dose in Chinese patients with heart valve replacement and demonstrated that integrating interacting drugs can largely improve the predictability of the dose algorithm.


Assuntos
Anticoagulantes/uso terapêutico , Hidrocarboneto de Aril Hidroxilases/genética , Sistema Enzimático do Citocromo P-450/genética , Oxigenases de Função Mista/genética , Varfarina/administração & dosagem , Adulto , China , Citocromo P-450 CYP2C9 , Família 4 do Citocromo P450 , Relação Dose-Resposta a Droga , Interações Medicamentosas/genética , Feminino , Estudos de Associação Genética , Variação Genética , Genótipo , Implante de Prótese de Valva Cardíaca/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Vitamina K Epóxido Redutases
11.
Mol Biol Rep ; 39(2): 1333-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21667244

RESUMO

We investigated whether transplantation of bone marrow mesenchymal stem cells (BMSC) with induced BMSC (iBMSC) or uninduced BMSC (uBMSC) into the myocardium could improve the performance of post-infarcted rat hearts. BMSCs were specified by flowcytometry. IBMSCs were cocultured with rat cardiomyocyte before transplantation. Cells were injected into borders of cardiac scar tissue 1 week after experimental infarction. Cardiac performance was evaluated by echocardiography at 1, 2, and 4 weeks after cellular or PBS injection. Langendorff working-heart and histological studies were performed 4 weeks after treatment. Myogenesis was detected by quantitative PCR and immunofluorescence. Echocardiography showed a nearly normal ejection fraction (EF) in iBMSC-treated rats and all sham control rats but a lower EF in all PBS-treated animals. The iBMSC-treated heart, assessed by echocardiography, improved fractional shortening compared with PBS-treated hearts. The coronary flow (CF) was decreased obviously in PBS and uBMSC-treated groups, but recovered in iBMSC-treated heart at 4 weeks (P < 0.01). Immunofluorescent microscopy revealed co-localization of Superparamagnetic iron oxide (SPIO)-labeled transplanted cells with cardiac markers for cardiomyocytes, indicating regeneration of damaged myocardium. These data provide strong evidence that iBMSC implantation is of more potential to improve infarcted cardiac performance than uBMSC treatment. It will open new promising therapeutic opportunities for patients with post-infarction heart failure.


Assuntos
Transplante de Medula Óssea , Coração/fisiologia , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/terapia , Animais , Diferenciação Celular/fisiologia , Primers do DNA/genética , Ecocardiografia , Citometria de Fluxo , Masculino , Microscopia de Fluorescência , Desenvolvimento Muscular/fisiologia , Miócitos Cardíacos/transplante , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley
12.
Mol Biol Rep ; 39(9): 8891-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22707199

RESUMO

Diabetic patients continue to develop inflammation and cardiovascular complication even after achieving glycemic control, suggesting a "metabolic memory". Metabolic memory is a major challenge in the treatment of diabetic complication, and the mechanisms underlying metabolic memory are not clear. Recent studies suggest a link between chromatin histone methylation and metabolic memory. In this study, we tested whether histone 3 lysine-9 tri-methylation (H3K9me3), a key epigenetic chromatin marker, was involved in high glucose (HG)-induced inflammation and metabolic memory. Incubating cardiomyocyte cells in HG resulted in increased levels of inflammatory cytokine IL-6 mRNA when compared with myocytes incubated in normal culture media, whereas mannitol (osmotic control) has no effect. Chromatin immunoprecipitation (ChIP) assays showed that H3K9me3 levels were significantly decreased at the promoters of IL-6. Immunoblotting demonstrated that protein levels of the H3K9me3 methyltransferase, Suv39h1, were also reduced after HG treatment. HG-induced apoptosis, mitochondrial dysfunction and cytochrome-c release were reversible. However, the effects of HG on the expression of IL-6 and the levels of H3K9me3 were irreversible after the removal of HG from the culture. These results suggest that HG-induced sustained inflammatory phenotype and epigenetic histone modification, rather than HG-induced mitochondrial dysfunction and apoptosis, are main mechanisms responsible for metabolic memory. In conclusion, our data demonstrate that HG increases expression of inflammatory cytokine and decreases the levels of histone-3 methylation at the cytokine promoter, and suggest that modulating histone 3 methylation and inflammatory cytokine expression may be a useful strategy to prevent metabolic memory and cardiomyopathy in diabetic patients.


Assuntos
Epigênese Genética , Glucose/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Miócitos Cardíacos/metabolismo , Linhagem Celular , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Metilação , Miócitos Cardíacos/efeitos dos fármacos , Regiões Promotoras Genéticas
13.
Cytokine ; 53(1): 35-41, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21030269

RESUMO

Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine associated with the atherosclerotic process and atherosclerotic plaque stability. MIF was shown to be highly expressed in advanced atherosclerotic lesions. Neutralizing MIF with a blocking antibody induced a regression of established atherosclerotic lesions. In this study, we investigated the mechanism underlying the proangiogenic effect of MIF in human umbilical vein endothelial cells (HUVECs). We showed that MIF induced the expression of angiogenesis-related genes in HUVECs. We also showed that MIF induced tube formation of HUVECs in vitro and in vivo. Angiotensin II (Ang II) could specifically up-regulate MIF expression in HUVECs. Using a luciferase reporter assay, we demonstrated that the AP-1 response element in the 5'-UTR of the MIF gene played a role in Ang II-induced MIF expression. Small hairpin RNA (shRNA) targeting c-Jun, a component of AP-1, and the AP-1 inhibitor CHX both efficiently inhibited MIF expression. The consistent result of electrophoretic mobility shift assay (EMSA) showed that Ang II specifically increased AP-1 activation in HUVECs. Our results suggest that AP-1 mediates Ang II-induced MIF expression which contributes to atherosclerotic plaque destabilization in human endothelial cells.


Assuntos
Indutores da Angiogênese/metabolismo , Angiotensina II/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Animais , Sequência de Bases , Extratos Celulares , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/farmacologia , Dados de Sequência Molecular , Ratos , Veias Umbilicais/citologia
14.
Eur J Clin Pharmacol ; 67(6): 581-90, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21318593

RESUMO

PURPOSE: Compared with genetic factors, drug interactions were largely unexplored in warfarin pharmacogenetic studies. This study sought to systematically investigate the effects of genetic polymorphisms of VKORC1, STX4A, CYP2C9, CYP3A4, and GGCX and interacting drugs on the initial responses to warfarin in Chinese patients with heart valve replacement (HVR). METHODS: A retrospective study was conducted in 809 patients starting warfarin therapy after HVR. The relationships between 12 polymorphisms plus 47 drugs and primary outcomes of the time to the first international normalized ratio (INR) ≥ 1.8 and the time to the first INR > 3.5 and the secondary outcomes of the proportion of time INR < 1.8, the proportion of time INR > 3.5, and the daily warfarin dose in the first 28 days after the initiation of warfarin treatment were analyzed. RESULTS: Genetic polymorphisms and interacting drugs could significantly affect the primary and secondary outcomes. The time to the first INR ≥ 1.8 was significantly influenced by the body surface area (BSA), VKORC1 g.3588G > A allele, and CYP2C9*3 allele, with hazard ratio (HR; 95% confidence interval [CI]) of 0.34 (0.17-0.66), 2.71 (2.2-3.35) and 1.43 (1.07-1.93) respectively. The time to the first INR > 3.5 was affected not only by BSA, VKORC1 g.3588G > A allele, and CYP2C9*3 allele with HR (95%CI) of 0.26 (0.07-0.99), 2.76 (1.61-4.72), and 3.09 (2.02-4.74) respectively, but also by age and interacting drugs, including fluconazole, amiodarone, and simvastatin with HR (95%CI) of 1.02 (1.01-1.04), 2.66 (1.16-6.08), 1.78 (1.17-2.73), and 5.33 (1.67-16.96) respectively. CONCLUSIONS: Not only VKORC1 and CYP2C9 genotypes, but also interacting drugs, had a significant impact on the variability of the initial response to warfarin.


Assuntos
Anticoagulantes/uso terapêutico , Anuloplastia da Valva Cardíaca , Valvas Cardíacas/cirurgia , Polimorfismo de Nucleotídeo Único , Varfarina/uso terapêutico , Adulto , Hidrocarboneto de Aril Hidroxilases/genética , Povo Asiático/genética , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Quimioterapia Combinada , Feminino , Genótipo , Haplótipos , Valvas Cardíacas/efeitos dos fármacos , Humanos , Coeficiente Internacional Normatizado , Masculino , Pessoa de Meia-Idade , Oxigenases de Função Mista/genética , Polimorfismo Genético , Estudos Retrospectivos
15.
Exp Cell Res ; 316(17): 2903-9, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20633551

RESUMO

Diabetic hyperglycemia result in cardiovascular complications, but the mechanisms by which high levels of glucose (HG) cause diabetic cardiomyopathy are not known. We investigate whether HG-induced repression of insulin-like growth factor 1 receptor (IGF-1R) mediated by epigenetic modifications is one potential mechanism. We found that HG resulted in decreased IGF-1 receptor (IGF-1R) mRNA levels, and IGF-1R protein when compared with H9C2 rat cardiomyocyte cells incubated in normal glucose. HG also induced apoptosis of H9C2 cells. The effects of HG on reduced expression of IGF-1R and increased apoptosis were blocked by silencing p53 with small interference RNA but not by non-targeting scrambled siRNA. Moreover, HG negatively regulated IGF-1R promoter activity as determined by ChIP analysis, which was dependent on p53 since siRNA-p53 attenuated the effects of HG on IGF-1R promoter activity. HG also increased the association of p53 with histone deacetylase 1 (HDAC1), and decreased the association of acetylated histone-4 with the IGF-1R promoter. Furthermore, HDAC inhibitor relieved the repression of IGF-1R following HG state. These results suggest that HG-induced repression of IGF-1R is mediated by the association of p53 with the IGF-1R promoter, and by the subsequent enhanced recruitment of chromatin-modifying proteins, such as HDAC1, to the IGF-1R promoter-p53 complex. In conclusion, our data demonstrate that HG decreases expression of IGF-1R and decreases the association of acetylated histone-4 with the IGF-1R promoter. These studies may help delineate the complex pathways regulating diabetic cardiomyopathy, and have implications for the development of novel therapeutic strategies to prevent diabetic cardiomyopathy by epigenetic regulation of IGF-1R.


Assuntos
Apoptose , Angiopatias Diabéticas/etiologia , Epigênese Genética , Hiperglicemia/patologia , Miócitos Cardíacos/metabolismo , Receptores de Somatomedina/genética , Acetilação , Animais , Glicemia , Linhagem Celular , Histonas/metabolismo , Miócitos Cardíacos/citologia , Regiões Promotoras Genéticas , Ratos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Clin Exp Pharmacol Physiol ; 38(5): 323-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21388437

RESUMO

1. It has been reported that allitridi, an active compound extracted from garlic, has many cardiovascular effects. However, it remains unknown whether allitridi affects major repolarization currents, such as the transient outward K(+) current (I(to) ), ultrarapid delayed rectifier K(+) current (I(Kur)) and the L-type Ca(2+) current (I(Ca)), in human atrial myocytes. 2. In the present study, we investigated the effects of allitridi on I(to), I(Kur), I(Ca) and the action potential in human isolated atrial myocytes using the whole-cell patch recording technique. 3. Allitridi reversibly inhibited I(to), but not I(Kur) and I(Ca), in human atrial myocytes. These effects of allitridi on I(to) were concentration dependent (IC(50) = 44.9 µmol/L). Inactivation of I(to) was accelerated and the voltage-dependent inactivation potential was shifted towards the negative direction. Allitridi (30 µmol/L) significantly prolonged action potential duration in human atrial myocytes. 4. The results of the present study indicate that allitridi inhibits I(to), but not I(Kur) and I(Ca), and prolongs the action potential duration in human atrial myocytes.


Assuntos
Compostos Alílicos/farmacologia , Átrios do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Sulfetos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Adulto , Idoso , Função Atrial/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Avaliação Pré-Clínica de Medicamentos , Eletrofisiologia , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Humanos , Potenciais da Membrana/efeitos dos fármacos , Pessoa de Meia-Idade , Miócitos Cardíacos/fisiologia , Canais de Potássio/metabolismo
17.
J Asian Nat Prod Res ; 13(1): 1-11, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21253944

RESUMO

Bone marrow-derived mesenchymal stem cells (MSCs) possess a multi-lineage differentiation potential and have the ability to repair and rebuild injured vessels. The autologous differentiated MSC transplantation also makes possible the tissue-engineered grafts. Therefore, the efficient endothelial differentiation of MSCs could be beneficial in the successful injured vessel repair and engraftment. Ginsenoside-Rg1, the most prevalent active constituent of ginseng, is a potent proangiogenic factor of vascular endothelial cells and also has the ability to enhance the proliferation of bone marrow cells. The aim of this study is to investigate the role of ginsenoside-Rg1 in the microenvironment-dependent endothelial differentiation of human MSCs (hMSCs) in vitro. The endothelial differentiation environment was established by co-culturing hMSCs with mature endothelial cells (human umbilical vein endothelial cells) indirectly in vitro. Reverse transcriptase-polymerase chain reaction analysis and fluorescence immunocytochemistry showed a strong expression of endothelial-specific markers such as CD31, Von Willebrand factor, and VE-cadherin. Electron microscopy showed the endothelial characteristic Weibel-Palade bodies of differentiated hMSCs. The increased expression of CD31 demonstrated that Rg1 promoted the endothelial differentiation of hMSCs. The findings here show the differentiation of hMSCs into cells with phenotypic features of endothelial cells using indirect co-culture with mature endothelial cells and provide the evidence that ginsenoside-Rg1 can promote the milieu-dependent endothelial differentiation of hMSCs in vitro.


Assuntos
Ginsenosídeos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Adipócitos/metabolismo , Células da Medula Óssea , Diferenciação Celular , Células Endoteliais/metabolismo , Ginsenosídeos/química , Humanos , Células-Tronco Mesenquimais/ultraestrutura , Estrutura Molecular , Fator de von Willebrand/metabolismo
18.
Clin Exp Pharmacol Physiol ; 37(10): 969-73, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20573157

RESUMO

1. It is known that high glucose can induce cardiomyocyte apoptosis and that macrophage migration inhibitory factor (MIF) may be involved in the development of diabetes. However, the relationship between high glucose and MIF in diabetic cardiomyopathy remains unclear. 2. In the present study, AC16 human cardiomyocytes were cultured in the presence of 25 mmol/L glucose for 20, 30 and 60 min before being subjected to western blot analyses to determine MIF expression and c-Jun N-terminal kinase (JNK) activation. In addition, AC16 cells were pretreated with 2.5 µmol/L SP600125 (a JNK inhibitor), 40 µmol/L (s,r)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1; an MIF antagonist) or 0.1% dimethylsulphoxide (DMSO; vehicle) for 1 h prior to exposure to 25 mmol/L glucose and culture for 72 h, followed by annexin V-fluorescein isothiocyanate/propidium iodide staining and flow cytometry analysis. Caspase 3 activity and phosphorylation of JNK were also analysed by western blotting. 3. The high concentration of glucose increased expression of endogenous MIF and JNK phosphorylation in AC16 cardiomyocytes. Pretreatment of cells with SP600125 and ISO-1 reduced glucose-induced apoptosis and caspase 3 activity. Furthermore, JNK phosphorylation was attenuated by inhibition of endogenous MIF. 4. In conclusion, myocardial cell apoptosis induced by high glucose involves the overexpression of MIF and activation of the JNK signalling pathway. The identification of a high glucose-MIF-JNK pathway will help determine potential new targets in the treatment of diabetic cardiomyopathy.


Assuntos
Apoptose/fisiologia , Glucose/administração & dosagem , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Miócitos Cardíacos/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/biossíntese , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia
19.
Yao Xue Xue Bao ; 45(7): 849-52, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20931781

RESUMO

The effects of ketamine on transient outward potassium current (I(to)) of isolated human atrial myocytes were investigated to understand the mechanism of part of its effects by whole-cell patch-clamp. Atrial myocytes were enzymatically isolated from specimens of human atrial appendage obtained from patients under going cardiac valve displacing. Ito is recorded in voltage-clamp modes using the patch-clamp technique at room temperature. Currents signals were recorded by an Axopatch 200B amplifier with the Digidata 1322A-pClamp 9.0 data acquisition system. Ketamine decreased I(to) of human atrial myocytes in a dose-dependent manner. The current-voltage curve was significantly lowered, 30, 100, 300, and 1000 micromol x L(-1) ketamine decreased respectively I(to) current density about (13.62 +/- 0.04)%, (38.92 +/- 0.05)%, (72.24 +/- 0.10)% and (83.84 +/- 0.05)% at the potential of 50 mV, with an IC50 of 121 micromol x L(-1). The I(to) activation curve, inactivation curve and the recovery curve were not altered by ketamine. So, ketamine concentration-dependently decreased I(to) of human atrial myocytes.


Assuntos
Anestésicos Dissociativos/farmacologia , Ketamina/farmacologia , Miócitos Cardíacos/fisiologia , Canais de Potássio/efeitos dos fármacos , Adolescente , Adulto , Idoso , Anestésicos Dissociativos/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Átrios do Coração/citologia , Humanos , Ketamina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Adulto Jovem
20.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 30(11): 1201-5, 2010 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-21275177

RESUMO

OBJECTIVE: To investigate the effect of ginsenoside Rg1 on the microenvironment dependent differentiation of human mesenchymal stem cells (hMSCs) to vaso-endothelioid cells (VECs) in vitro. METHODS: The in vitro differentiation of hMSCs to VECs were established adopting the in vivo environment simulated semi-permeable membrane separated non-contact co-culturing method. The mRNA expressions of endothelial markers, such as platelet endothelial adhesive factor-1 (CD31), vascular hemophillia factor (vWF) and vascular endothelial cadherin (VE-cadherin) were analyzed by RT-PCR; the protein expressions of CD31 and vascular endothelial adhesive factor-1 (VCAM1) were detected by fluorescence immunohistochemistry; structural identification for the endothelial characteristics of differentiated hMSCs were made under electron microscopy; and the percentage of CD31 expression in differentiated hMSCs was determined by flow cytometry to explore the effect of ginsenoside Rg1 on the differentiation. RESULTS: The bone marrow mesenchymal stem cells co-cultured with mature endothelial membrane showed a microenvironment dependent capacity for differentiating to endothelium, with the morphological changes revealed starting from the 2nd week, showing cell body contraction, polygonal-shaped change; and at the 3rd week, the markedly speedily cell proliferation with elliptic or slabstone-like change of cells. High levels of classic endothelial cell markers, such as mRNA expressions of CD31, vWF, VE-cadherin, and protein expressions of CD31 and VCAM1, were shown; the typical weibel-palade body of endothelial cell was found in the differentiated cells. Moreover, percentage of CD31 expression in the differentiated hMSCs was increased after Rg1 treatment dose-dependently. CONCLUSION: Under the microenvironment of co-culture, hMSCs could differentiate into cells presenting the characteristics of endothelial cell in aspects of the morphology and ultrastructure of cells, as well as the gene and protein expressions of cell markers; ginsenoside Rg1 can promote the microenvironment dependent differentiation of hMSCs to VECs system in vitro.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Endotélio Vascular/citologia , Ginsenosídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células da Medula Óssea/citologia , Caderinas/metabolismo , Células Cultivadas , Técnicas de Cocultura , Humanos , Panax/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa