Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neural Plast ; 2018: 9347696, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770147

RESUMO

Despite decades of studies, the currently available drugs largely fail to control neuropathic pain. Koumine-an alkaloidal constituent derived from the medicinal plant Gelsemium elegans Benth.-has been shown to possess analgesic and anti-inflammatory properties; however, the underlying mechanisms remain unclear. In this study, we aimed to investigate the analgesic and anti-inflammatory effects and the possible underlying mechanisms of koumine. The analgesic and anti-inflammatory effects of koumine were explored by using chronic constriction injury of the sciatic nerve (CCI) neuropathic pain model in vivo and LPS-induced injury in microglia BV2 cells in vitro. Immunofluorescence staining and Western blot analysis were used to assess the modulator effect of koumine on microglia and astrocyte activation after CCI surgery. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the levels of proinflammatory cytokines. Western blot analysis and quantitative real-time polymerase chain reaction (qPCR) were used to examine the modulator effect of koumine on microglial M1 polarization. We found that single or repeated treatment of koumine can significantly reduce neuropathic pain after nerve injury. Moreover, koumine showed inhibitory effects on CCI-evoked microglia and astrocyte activation and reduced proinflammatory cytokine production in the spinal cord in rat CCI models. In BV2 cells, koumine significantly inhibited microglia M1 polarization. Furthermore, the analgesic effect of koumine was inhibited by a TSPO antagonist PK11195. These findings suggest that the analgesic effects of koumine on CCI-induced neuropathic pain may result from the inhibition of microglia activation and M1 polarization as well as the activation of astrocytes while sparing the anti-inflammatory responses to neuropathic pain.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Astrócitos/efeitos dos fármacos , Alcaloides Indólicos/administração & dosagem , Inflamação/prevenção & controle , Microglia/efeitos dos fármacos , Neuralgia/complicações , Animais , Astrócitos/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Inflamação/complicações , Inflamação/metabolismo , Masculino , Microglia/metabolismo , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Nervo Isquiático/lesões , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
2.
Nat Commun ; 15(1): 2374, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490979

RESUMO

Developing fiber electronics presents a practical approach for establishing multi-node distributed networks within the human body, particularly concerning triboelectric fibers. However, realizing fiber electronics for monitoring micro-physiological activities remains challenging due to the intrinsic variability and subtle amplitude of physiological signals, which differ among individuals and scenarios. Here, we propose a technical approach based on a dynamic stability model of sheath-core fibers, integrating a micro-flexure-sensitive fiber enabled by nanofiber buckling and an ion conduction mechanism. This scheme enhances the accuracy of the signal transmission process, resulting in improved sensitivity (detectable signal at ultra-low curvature of 0.1 mm-1; flexure factor >21.8% within a bending range of 10°.) and robustness of fiber under micro flexure. In addition, we also developed a scalable manufacturing process and ensured compatibility with modern weaving techniques. By combining precise micro-curvature detection, micro-flexure-sensitive fibers unlock their full potential for various subtle physiological diagnoses, particularly in monitoring fiber upper limb muscle strength for rehabilitation and training.

3.
Science ; 384(6691): 74-81, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574120

RESUMO

Intelligent textiles provide an ideal platform for merging technology into daily routines. However, current textile electronic systems often rely on rigid silicon components, which limits seamless integration, energy efficiency, and comfort. Chipless electronic systems still face digital logic challenges owing to the lack of dynamic energy-switching carriers. We propose a chipless body-coupled energy interaction mechanism for ambient electromagnetic energy harvesting and wireless signal transmission through a single fiber. The fiber itself enables wireless visual-digital interactions without the need for extra chips or batteries on textiles. Because all of the electronic assemblies are merged in a miniature fiber, this facilitates scalable fabrication and compatibility with modern weaving techniques, thereby enabling versatile and intelligent clothing. We propose a strategy that may address the problems of silicon-based textile systems.

4.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3787-3799, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37805854

RESUMO

The aim of this study was to investigate the functional characteristics and in vitro specific killing effect of EGFRvIII CAR-T cells co-expressing interleukin-15 and chemokine CCL19, in order to optimize the multiple functions of CAR-T cells and improve the therapeutic effect of CAR-T cells targeting EGFRvIII on glioblastoma (GBM). The recombinant lentivirus plasmid was obtained by genetic engineering, transfected into 293T cells to obtain lentivirus and infected T cells to obtain the fourth generation CAR-T cells targeting EGFRvIII (EGFRvIII-IL-15-CCL19 CAR-T). The expression rate of CAR molecules, proliferation, chemotactic ability, in vitro specific killing ability and anti-apoptotic ability of the fourth and second generation CAR-T cells (EGFRvIII CAR-T) were detected by flow cytometry, cell counter, chemotaxis chamber and apoptosis kit. The results showed that compared with EGFRvIII CAR-T cells, EGFRvIII-IL-15-CCL19 CAR-T cells successfully secreted IL-15 and CCL19, and had stronger proliferation, chemotactic ability and anti-apoptosis ability in vitro (all P < 0.05), while there was no significant difference in killing ability in vitro. Therefore, CAR-T cells targeting EGFRvIII and secreting IL-15 and CCL19 are expected to improve the therapeutic effect of glioblastoma and provide an experimental basis for clinical trials.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Quimiocina CCL19/metabolismo , Linhagem Celular Tumoral , Linfócitos T/metabolismo
5.
Sci China Life Sci ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37202543

RESUMO

Gut barrier disruption is a key event in bridging gut microbiota dysbiosis and high-fat diet (HFD)-associated metabolic disorders. However, the underlying mechanism remains elusive. In the present study, by comparing HFD- and normal diet (ND)-treated mice, we found that the HFD instantly altered the composition of the gut microbiota and subsequently damaged the integrity of the gut barrier. Metagenomic sequencing revealed that the HFD upregulates gut microbial functions related to redox reactions, as confirmed by the increased reactive oxygen species (ROS) levels in fecal microbiota incubation in vitro and in the lumen, which were detected using in vivo fluorescence imaging. This microbial ROS-producing capability induced by HFD can be transferred through fecal microbiota transplantation (FMT) into germ-free (GF) mice, downregulating the gut barrier tight junctions. Similarly, mono-colonizing GF mice with an Enterococcus strain excelled in ROS production, damaged the gut barrier, induced mitochondrial malfunction and apoptosis of the intestinal epithelial cells, and exacerbated fatty liver, compared with other low-ROS-producing Enterococcus strains. Oral administration of recombinant high-stability-superoxide dismutase (SOD) significantly reduced intestinal ROS, protected the gut barrier, and improved fatty liver against the HFD. In conclusion, our study suggests that extracellular ROS derived from gut microbiota play a pivotal role in HFD-induced gut barrier disruption and is a potential therapeutic target for HFD-associated metabolic diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa