Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(9): 2983-2995, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36988669

RESUMO

Vaccination is considered to be the most effective countermeasure to prevent and combat the global health threats of COVID-19. People with obesity are at a greater risk of hospitalization, life-threatening illness, and adverse outcomes after having COVID-19. Therefore, a safe and effective COVID-19 vaccine for obese individuals is urgently needed. In the study, the vaccine composed of the ISA 51 adjuvant and the SARS-CoV-2 spike (S) receptor-binding domain (RBD) in conjugation with the human IgG1 Fc fragment (named as ISA 51-adjuvanted RBD-Fc vaccine) was developed and inoculated in the regular chow diet (RCD) lean mice and the high-fat diet (HFD)-induced obese mice. The S protein-specific IgG titers were largely induced in an increasing manner along with three doses of ISA 51-adjuvanted RBD-Fc vaccine without causing any harmful side effect. In the HFD mice, the S protein-specific IgG titers can be quickly observed 2 weeks post the first inoculation. The antisera elicited by the ISA 51-adjuvanted RBD-Fc vaccine in the RCD and HFD mice exhibited potent SARS-CoV-2 neutralizing activities in the plaque reduction neutralization test (PRNT) assays and showed similar specificity for recognizing the key residues in the RBD which were involved in interacting with angiotensin-converting enzyme 2 (ACE2) receptor. The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine in the HFD mice can be sustainably maintained with the PRNT50 values of 1.80-1.91×10-3 for at least 8 weeks post the third inoculation. Collectively, the RBD-Fc-based immunogen and the ISA 51-adjuvanted formulation can be developed as an effective COVID-19 vaccine for obese individuals. KEY POINTS: • The ISA 51-adjuvanted RBD-Fc vaccine can induce potent SARS-CoV-2 neutralizing antibodies in the obese mouse • The antibodies elicited by the ISA 51-adjuvanted RBD-Fc vaccine can bind to the key RBD residues involved in interacting with ACE2 • The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine can be sustainably maintained for at least 8 weeks post the third inoculation.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Vacinas contra COVID-19 , SARS-CoV-2 , Camundongos Obesos , Enzima de Conversão de Angiotensina 2 , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus
2.
Antiviral Res ; 200: 105290, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35296418

RESUMO

Neutralizing antibodies (NAbs) are believed to be promising prophylactic and therapeutic treatment against the coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we reported two mouse monoclonal antibodies 7 Eb-4G and 1Ba-3H that specifically recognized the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein without exhibiting cross-reactivity with the S proteins of SARS-CoV and MERS-CoV. The binding epitopes of 7 Eb-4G and 1Ba-3H were respectively located in the regions of residues 457-476 and 477-496 in the S protein. Only 1Ba-3H exhibited the neutralizing activity for preventing the pseudotyped lentivirus from binding to the angiotensin-converting enzyme 2 (ACE2)-transfected HEK293T cells. The competitive ELISA further showed that 1Ba-3H interfered with the binding between RBD and ACE2. Epitope mapping experiments demonstrated that a single alanine replacement at residues 480, 482, 484, 485, and 488-491 in the RBD abrogated 1Ba-3H binding. 1Ba-3H exhibited the neutralizing activity against the wild-type, Alpha, Delta, and Epsilon variants of SARS-CoV-2, but lost the neutralizing activity against Gamma variant in the plaque reduction assay. On the contrary, 1Ba-3H enhanced the cellular infection of Gamma variant in a dose-dependent manner. Our findings suggest that the antibody-dependent enhancement of infection mediated by the RBD-specific antibody for different SARS-CoV-2 variants must be considered while developing the NAb.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Epitopos , Células HEK293 , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa