RESUMO
Distinct phylogeny and substrate specificities suggest that 12 Arabidopsis Ovarian Tumor domain-containing (OTU) deubiquitinases participate in conserved or plant-specific functions. The otu5-1 null mutant displayed a pleiotropic phenotype, including early flowering, mimicking that of mutants harboring defects in subunits (e.g., ARP6) of the SWR1 complex (SWR1c) involved in histone H2A.Z deposition. Transcriptome and RT-qPCR analyses suggest that downregulated FLC and MAF4-5 are responsible for the early flowering of otu5-1. qChIP analyses revealed a reduction and increase in activating and repressive histone marks, respectively, on FLC and MAF4-5 in otu5-1. Subcellular fractionation, GFP-fusion expression, and MNase treatment of chromatin showed that OTU5 is nucleus-enriched and chromatin-associated. Moreover, OTU5 was found to be associated with FLC and MAF4-5. The OTU5-associated protein complex(es) appears to be distinct from SWR1c, as the molecular weights of OTU5 complex(es) were unaltered in arp6-1 plants. Furthermore, the otu5-1 arp6-1 double mutant exhibited synergistic phenotypes, and H2A.Z levels on FLC/MAF4-5 were reduced in arp6-1 but not otu5-1. Our results support the proposition that Arabidopsis OTU5, acting independently of SWR1c, suppresses flowering by activating FLC and MAF4-5 through histone modification. Double-mutant analyses also indicate that OTU5 acts independently of the HUB1-mediated pathway, but it is partially required for FLC-mediated flowering suppression in autonomous pathway mutants and FRIGIDA-Col.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Código das Histonas , Proteínas de Arabidopsis/metabolismo , Proteínas de Domínio MADS/metabolismo , Flores/metabolismo , Mutação , Histonas/genética , Histonas/metabolismo , Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Approximately 25% of patients with early-stage breast cancer experience cancer progression throughout the disease course. Alterations in TMEM240 in breast cancer were identified and investigated to monitor treatment response and disease progression. METHODS: Circulating methylated TMEM240 in the plasma of breast cancer patients was used to monitor treatment response and disease progression. The Cancer Genome Atlas (TCGA) data in Western countries and Illumina methylation arrays in Taiwanese breast cancer patients were used to identify novel hypermethylated CpG sites and genes related to poor hormone therapy response. Quantitative methylation-specific PCR (QMSP), real-time reverse transcription PCR, and immunohistochemical analyses were performed to measure DNA methylation and mRNA and protein expression levels in 394 samples from Taiwanese and Korean breast cancer patients. TMEM240 gene manipulation, viability, migration assays, RNA-seq, and MetaCore were performed to determine its biological functions and relationship to hormone drug treatment response in breast cancer cells. RESULTS: Aberrant methylated TMEM240 was identified in breast cancer patients with poor hormone therapy response using genome-wide methylation analysis in the Taiwan and TCGA breast cancer cohorts. A cell model showed that TMEM240, which is localized to the cell membrane and cytoplasm, represses breast cancer cell proliferation and migration and regulates the expression levels of enzymes involved in estrone and estradiol metabolism. TMEM240 protein expression was observed in normal breast tissues but was not detected in 88.2% (67/76) of breast tumors and in 90.0% (9/10) of metastatic tumors from breast cancer patients. QMSP revealed that in 54.5% (55/101) of Taiwanese breast cancer patients, the methylation level of TMEM240 was at least twofold higher in tumor tissues than in matched normal breast tissues. Patients with hypermethylation of TMEM240 had poor 10-year overall survival (p = 0.003) and poor treatment response, especially hormone therapy response (p < 0.001). Circulating methylated TMEM240 dramatically and gradually decreased and then diminished in patients without disease progression, whereas it returned and its levels in plasma rose again in patients with disease progression. Prediction of disease progression based on circulating methylated TMEM240 was found to have 87.5% sensitivity, 93.1% specificity, and 90.2% accuracy. CONCLUSIONS: Hypermethylation of TMEM240 is a potential biomarker for treatment response and disease progression monitoring in breast cancer.
Assuntos
Antineoplásicos Hormonais , Neoplasias da Mama , Metilação de DNA , Proteínas de Membrana , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ilhas de CpG , Progressão da Doença , Feminino , Hormônios , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Valor Preditivo dos TestesRESUMO
Although the nucleolus is involved in ribosome biogenesis, the functions of numerous nucleolus-localized proteins remain unclear. In this study, we genetically isolated Arabidopsis thaliana salt hypersensitive mutant 1 (sahy1), which exhibits slow growth, short roots, pointed leaves, and sterility. SAHY1 encodes an uncharacterized protein that is predominantly expressed in root tips, early developing seeds, and mature pollen grains and is mainly restricted to the nucleolus. Dysfunction of SAHY1 primarily causes the accumulation of 32S, 18S-A3, and 27SB pre-rRNA intermediates. Coimmunoprecipitation experiments further revealed the interaction of SAHY1 with ribosome proteins and ribosome biogenesis factors. Moreover, sahy1 mutants are less sensitive to protein translation inhibitors and show altered expression of structural constituents of ribosomal genes and ribosome subunit profiles, reflecting the involvement of SAHY1 in ribosome composition and ribosome biogenesis. Analyses of ploidy, S-phase cell cycle progression, and auxin transport and signaling indicated the impairment of mitotic activity, translation of auxin transport carrier proteins, and expression of the auxin-responsive marker DR5::GFP in the root tips or embryos of sahy1 plants. Collectively, these data demonstrate that SAHY1, a nucleolar protein involved in ribosome biogenesis, plays critical roles in normal plant growth in association with auxin transport and signaling.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Precursores de RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Precursores de RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genéticaRESUMO
The effectiveness of an airlift reactor system in simultaneously removing hydrogen sulfide (H2S) and ammonia (NH3) from synthetic and actual waste gases was investigated. The effects of various parameters, including the ratio of inoculum dilution, the gas concentration, the gas retention time, catalyst addition, the bubble size, and light intensity, on H2S and NH3 removal were investigated. The results revealed that optimal gas removal could be achieved by employing an activated inoculum, using a small bubble stone, applying reinforced fluorescent light, adding Fe2O3 catalysts, and applying a gas retention time of 20 s. The shock loading did not substantially affect the removal efficiency of the airlift bioreactor. Moreover, more than 98.5% of H2S and 99.6% of NH3 were removed in treating actual waste gases. Fifteen bands or species were observed in a profile from denaturing gradient gel electrophoresis during waste gas treatment. Phylogenetic analysis revealed the phylum Proteobacteria to be predominant. Six bacterial strains were consistently present during the entire operating period; however, only Rhodobacter capsulatus, Rhodopseudomonas palustris, and Arthrobacter oxydans were relatively abundant in the system. The photosynthetic bacteria R. capsulatus and R. palustris were responsible for H2S oxidation, especially when the reinforced fluorescent light was used. The heterotrophic nitrifier A. oxydans was responsible for NH3 oxidation. To our knowledge, this is the first report on simultaneous H2S and NH3 removal using an airlift bioreactor system. It clearly demonstrates the effectiveness of the system in treating actual waste gases containing H2S and NH3.
Assuntos
Amônia/isolamento & purificação , Reatores Biológicos , Gases/química , Sulfeto de Hidrogênio/isolamento & purificação , Amônia/farmacocinética , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Indústria Alimentícia , Gases/farmacocinética , Sulfeto de Hidrogênio/farmacocinética , Esgotos/química , Esgotos/microbiologia , Suínos/microbiologiaRESUMO
Transcriptome profiling has been used to identify genes expressed in pollen tubes elongating in vitro; however, little is known of the transcriptome of in vivo-grown pollen tubes due to the difficulty of collecting pollen that is elongating within the solid maternal gynoecium. Using a pollen-specific promoter (ProLAT52) to generate epitope-tagged polysomal-RNA complexes that could be affinity purified, we obtained mRNAs undergoing translation (the translatome) of in vivo-grown pollen tubes from self-pollinated gynoecia of Arabidopsis thaliana. Translatomes of pollen grains as well as in vivo- and in vitro-cultured pollen tubes were assayed by microarray analyses, revealing over 500 transcripts specifically enriched in in vivo-elongating pollen tubes. Functional analyses of several in vivo mutants (iv) of these pollination-enhanced transcripts revealed partial pollination/fertilization and seed formation defects in siliques (iv2, iv4, and iv6). Cytological observation confirmed the involvement of these genes in specialized processes including micropylar guidance (IV6 and IV4), pollen tube burst (IV2), and repulsion of multiple pollen tubes in embryo sac (IV2). In summary, the selective immunopurification of transcripts engaged with polysomes in pollen tubes within self-fertilized florets has identified a cohort of pollination-enriched transcripts that facilitated the identification of genes important in in vivo pollen tube biology.
Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Genes de Plantas , Tubo Polínico/fisiologia , Polinização/genética , Biossíntese de Proteínas/genética , Arabidopsis/ultraestrutura , Cruzamentos Genéticos , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Família Multigênica , Mutagênese Insercional/genética , Mutação/genética , Plantas Geneticamente Modificadas , Tubo Polínico/genética , Tubo Polínico/ultraestrutura , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Autofertilização/genéticaRESUMO
The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth.
Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/enzimologia , RNA Helicases DEAD-box/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA Ribossômico/metabolismo , Sementes/enzimologia , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Glucose/metabolismo , Modelos Biológicos , Mutagênese Insercional , Fenótipo , Plantas Geneticamente Modificadas , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Ribossômico/genética , Ribossomos/genética , Ribossomos/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de SinaisRESUMO
The early detection of cancer can reduce cancer-related mortality. There is no clinically useful noninvasive biomarker for early detection of breast cancer. The aim of this study was to develop accurate and precise early detection biomarkers and a dynamic monitoring system following treatment. We analyzed a genome-wide methylation array in Taiwanese and The Cancer Genome Atlas (TCGA) breast cancer (BC) patients. Most breast cancer-specific circulating methylated CCDC181, GCM2 and ITPRIPL1 biomarkers were found in the plasma. An automatic analysis process of methylated ccfDNA was established. A combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was performed in R using Recursive Partitioning and Regression Trees to establish a new prediction model. Combined analysis of CCDC181, GCM2 and ITPRIPL1 (CGIm) was found to have a sensitivity level of 97% and an area under the curve (AUC) of 0.955 in the training set, and a sensitivity level of 100% and an AUC of 0.961 in the test set. The circulating methylated CCDC181, GCM2 and ITPRIPL1 was also significantly decreased after surgery (all p < 0.001). The aberrant methylation patterns of the CCDC181, GCM2 and ITPRIPL1 genes means that they are potential biomarkers for the detection of early BC and can be combined with breast imaging data to achieve higher accuracy, sensitivity and specificity, facilitating breast cancer detection. They may also be applied to monitor the surgical treatment response.
RESUMO
BACKGROUND: Gene silencing by aberrant DNA methylation of promoter regions remains the most dominant phenomenon occurring during tumorigenesis. Improving the early diagnosis, prognosis, and recurrence prediction of colorectal cancer using noninvasive aberrant DNA methylation biomarkers has encouraging potential. The aim of this study is to characterize the DNA methylation of the promoter region of TMEM240, as well as gene expression and its effect on cell biological functions and its applications in early detection and outcome prediction. RESULTS: Highly methylated CpG sites were identified in the TMEM240 gene by Illumina methylation 450K arrays in 26 Taiwanese patient paired samples and 38 paired samples from The Cancer Genome Atlas (TCGA) colorectal cancer dataset. Transient transfection and knockdown of TMEM240 were performed to demonstrate the role of TMEM240 in colorectal cancer cells. The data showed that TMEM240 could lead to G1 cell cycle arrest, repress cancer cell proliferation, and inhibit cancer cell migration. The quantitative methylation-specific real-time polymerase chain reaction (PCR) results revealed that 87.8% (480 of 547) of the colorectal cancer tumors had hypermethylated TMEM240, and this was also found in benign tubular adenomas (55.6%). Circulating cell-free methylated TMEM240 was detected in 13 of 25 (52.0%) Taiwanese colorectal cancer patients but in fewer (28.6%) healthy controls. In 72.0% (85/118) of tissue samples, TMEM240 mRNA expression was lower in Taiwanese CRC tumor tissues than in normal colorectal tissues according to real-time reverse transcription PCR results, and this was also found in benign tubular adenomas (44.4%). The TMEM240 protein was analyzed in South Korean and Chinese CRC patient samples using immunohistochemistry. The results exhibited low protein expression in 91.7% (100/109) of tumors and 75.0% (24/32) of metastatic tumors but exhibited high expression in 75.0% (6/8) of normal colon tissues. Multivariate Cox proportional hazards regression analysis found that mRNA expression of TMEM240 was significantly associated with overall, cancer-specific, and recurrence-free survival (p = 0.012, 0.007, and 0.022, respectively). CONCLUSIONS: Alterations in TMEM240 are commonly found in Western and Asian populations and can potentially be used for early prediction and as poor prognosis and early-recurrence biomarkers in colorectal cancer.
Assuntos
Neoplasias Colorretais/genética , Metilação de DNA , Proteínas de Membrana/genética , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , China , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Prognóstico , RNA Mensageiro/metabolismo , República da Coreia , TaiwanRESUMO
OBJECTIVE: To evaluate the controllability of, and physiological responses to, 2 newly designed unilaterally-propelled wheelchairs for patients with hemiplegia. DESIGN: Within-subject comparison. SUBJECTS: A total of 15 patients after stroke were recruited from the rehabilitation centre of Chung Shan Medical University, Taichung, Taiwan. METHODS: Two newly designed wheelchairs (an ankle-propelled wheelchair and a knee-propelled wheelchair) were compared with a commercially available 2-hand-rim propelled wheelchair. Patients propelled the 3 wheelchairs along an oval pathway. Videotapes were made for analysis. The following parameters: total propulsion time, deviation frequency, deviation percentage, physiological cost index (VO2) and rating of perceived exertion were measured and compared. RESULTS: The knee-propelled wheelchair gave the best results for controllability, cardiopulmonary and perceived exertion. However, the gear ratio of this wheelchair's force transmission was fixed, and some patients felt that its propulsion was heavy when starting off. CONCLUSION: The knee-propelled wheelchair showed good controllability and physiological responses for hemiplegic patients. If some details were improved, it would suitable for use by patients with hemiplegia.
Assuntos
Hemiplegia/reabilitação , Reabilitação do Acidente Vascular Cerebral , Cadeiras de Rodas , Idoso , Feminino , Hemiplegia/fisiopatologia , Humanos , Perna (Membro)/fisiopatologia , Masculino , Pessoa de Meia-Idade , Esforço Físico , Acidente Vascular Cerebral/fisiopatologia , Cadeiras de Rodas/normasRESUMO
OBJECTIVE: This study aimed to verify and compare the accuracy of energy expenditure (EE) prediction models using shoe-based motion detectors with embedded accelerometers. METHODS: Three physical activity (PA) datasets (unclassified, recognition, and intensity segmentation) were used to develop three prediction models. A multiple classification flow and these models were used to estimate EE. The "unclassified" dataset was defined as the data without PA recognition, the "recognition" as the data classified with PA recognition, and the "intensity segmentation" as the data with intensity segmentation. The three datasets contained accelerometer signals (quantified as signal magnitude area (SMA)) and net heart rate (HRnet). The accuracy of these models was assessed according to the deviation between physically measured EE and model-estimated EE. RESULTS: The variance between physically measured EE and model-estimated EE expressed by simple linear regressions was increased by 63% and 13% using SMA and HRnet, respectively. The accuracy of the EE predicted from accelerometer signals is influenced by the different activities that exhibit different count-EE relationships within the same prediction model. CONCLUSION: The recognition model provides a better estimation and lower variability of EE compared with the unclassified and intensity segmentation models. SIGNIFICANCE: The proposed shoe-based motion detectors can improve the accuracy of EE estimation and has great potential to be used to manage everyday exercise in real time.
Assuntos
Acelerometria/instrumentação , Modelos Biológicos , Monitorização Ambulatorial/instrumentação , Consumo de Oxigênio/fisiologia , Sapatos , Acelerometria/métodos , Adulto , Simulação por Computador , Sistemas Computacionais , Metabolismo Energético/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Masculino , Monitorização Ambulatorial/métodos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Rocker-soled shoes provide a way to reduce the possible concentration of stress, as well as change movement patterns, during gait. This study attempts to examine how plantar force and spatio-temporal variables are affected by two rocker designs, one with softer and one with denser sole materials, by comparing them with the barefoot condition and with flat-soled shoes. Eleven subjects' gait parameters during walking and jogging were recorded. Our results showed that compared with barefoot walking, plantar forces were higher for flat shoes while lower for both types of rocker shoes, the softer-material rocker being the lowest. The plantar force of flat shoes is greater than the vertical ground reaction force, while that of both rocker shoes is much less, 13.87-30.55% body weight. However, as locomotion speed increased to jogging, for all shoe types, except at the second peak plantar force of the denser sole material rocker shoes, plantar forces were greater than for bare feet. More interestingly, because the transmission of force was faster while jogging, greater plantar force was seen in the rocker-soled shoes with softer material than with denser material; results for higher-speed shock absorption in rocker-soled shoes with softer material were thus not as good. In general, the rolling phenomena along the bottom surface of the rocker shoes, as well as an increase in the duration of simultaneous curve rolling and ankle rotation, could contribute to the reduction of plantar force for both rocker designs. The possible mechanism is the conversion of vertical kinetic energy into rotational kinetic energy. To conclude, since plantar force is related to foot-ground interface and deceleration methods, rocker-design shoes could achieve desired plantar force reduction through certain rolling phenomena, shoe-sole stiffness levels, and locomotion speeds.
Assuntos
Pé/fisiologia , Marcha , Corrida Moderada , Sapatos , Caminhada , Adulto , Fenômenos Biomecânicos , Índice de Massa Corporal , Peso Corporal , Desenho de Equipamento , Humanos , Masculino , Pressão , Estresse MecânicoRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0169151.].
RESUMO
Dentin is the main supporting structure of teeth, but its mechanical properties may be adversely affected by pathological demineralization. The purposes of this study were to develop a quantitative approach to characterize the viscoelastic properties of dentin after de- and re-mineralization, and to examine the elastic properties using a nanoindentation creep test. Dentin specimens were prepared to receive both micro- and nano-indentation tests at wet and dry states. These tests were repeatedly performed after demineralization (1% citric acid for 3 days) and remineralization (artificial saliva immersion for 28 days). The nanoindentation test was executed in a creep mode, and the resulting displacement-time responses were disintegrated into primary (transient) and secondary (viscous) creep. The structural changes and mineral densities of dentin were also examined under SEM and microCT, respectively. The results showed that demineralization removed superficial minerals of dentin to the depth of 400 µm, and affected its micro- and nano-hardness, especially in the hydrate state. Remineralization only repaired the minerals at the surface layer, and partially recovered the nanohardness. Both the primary the secondary creep increased in the demineralized dentin, while the hydration further enhanced creep deformation of untreated and remineralized dentin. Remineralization reduced the primary creep of dentin, but did not effectively increase the viscosity. In conclusion, water plasticization increases the transient and viscous creep strains of demineralized dentin and reduces load sustainability. The nanoindentation creep test is capable of analyzing the elastic and viscoelastic properties of dentin, and reveals crucial information about creep responses.
Assuntos
Dentina/fisiologia , Algoritmos , Fenômenos Biomecânicos , Dentina/ultraestrutura , Elasticidade , Dureza , Humanos , Dente Molar/fisiologia , Dente Molar/ultraestrutura , ViscosidadeAssuntos
Comportamento do Adolescente/efeitos dos fármacos , Antivirais/efeitos adversos , Transtornos Disruptivos, de Controle do Impulso e da Conduta/induzido quimicamente , Influenza Humana/tratamento farmacológico , Libido/efeitos dos fármacos , Oseltamivir/efeitos adversos , Adolescente , Despersonalização/induzido quimicamente , Humanos , MasculinoRESUMO
BACKGROUND: The rice gene, OsMADS45, which belongs to the MADS-box E class gene, participates in the regulation of floral development. Previous studies have revealed that ectopic expression of OsMADS45 induces early flowering and influences reduced plant height under short-day (SD) conditions. However, the regulation mechanism of OsMADS45 overexpression remains unknown. We introduce an OsMADS45 overexpression construct Ubi:OsMADS45 into TNG67 plants (an Hd1 (Heading date 1) and Ehd1 (Early heading date 1) defective rice cultivar grown in Taiwan), and we analyzed the expression patterns of various floral regulators to understand the regulation pathways affected by OsMADS45 expression. RESULTS: The transgenic rice exhibit a heading date approximately 40 days earlier than that observed in TNG67 plants, and transgenic rice display small plant size and low grain yield. OsMADS45 overexpression did not alter the oscillating rhythm of the examined floral regulatory genes but advanced (by approximately 20 days) the up-regulate of two florigens, Hd3a (Heading Date 3a) and RFT1 (RICE FLOWERING LOCUS T1) and suppressed the expression of Hd1 at the juvenile stage. The expression levels of OsMADS14 and OsMADS18, which are two well-known reproductive phase transition markers, were also increased at early developmental stages and are believed to be the major regulators responsible for early flowering in OsMADS45-overexpressing transgenic rice. OsMADS45 overexpression did not influence other floral regulator genes upstream of Hd1 and Ehd1, such as OsGI (OsGIGANTEA), Ehd2/Osld1/RID1 and OsMADS50. CONCLUSION: These results indicate that in transgenic rice, OsMADS45 overexpressing ectopically activates the upstream genes Hd3a and RFT1 at early development stage and up-regulates the expression of OsMADS14 and OsMADS18, which induces early flowering.