Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(8): 5017-5024, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268338

RESUMO

Graphene is a two-dimensional (2D) structure that creates a linear relationship between energy and momentum that not only forms massless Dirac fermions with extremely high group velocity but also exhibits a broadband transmission from 300 to 2500 nm that can be applied to many optoelectronic applications, such as solar cells, light-emitting devices, touchscreens, ultrafast photodetectors, and lasers. Although the plasmonic resonance of graphene occurs in the terahertz band, graphene can be combined with a noble metal to provide a versatile platform for supporting surface plasmon waves. In this study, we propose a hybrid graphene-insulator-metal (GIM) structure that can modulate the surface plasmon polariton (SPP) dispersion characteristics and thus influence the performance of plasmonic nanolasers. Compared with values obtained when graphene is not used on an Al template, the propagation length of SPP waves can be increased 2-fold, and the threshold of nanolasers is reduced by 50% when graphene is incorporated on the template. The GIM structure can be further applied in the future to realize electrical control or electrical injection of plasmonic devices through graphene.

2.
Nano Lett ; 18(2): 747-753, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29320208

RESUMO

Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

3.
Nano Lett ; 16(5): 3179-86, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27089144

RESUMO

The recent development of plasmonics has overcome the optical diffraction limit and fostered the development of several important components including nanolasers, low-operation-power modulators, and high-speed detectors. In particular, the advent of surface-plasmon-polariton (SPP) nanolasers has enabled the development of coherent emitters approaching the nanoscale. SPP nanolasers widely adopted metal-insulator-semiconductor structures because the presence of an insulator can prevent large metal loss. However, the insulator is not necessary if permittivity combination of laser structures is properly designed. Here, we experimentally demonstrate a SPP nanolaser with a ZnO nanowire on the as-grown single-crystalline aluminum. The average lasing threshold of this simple structure is 20 MW/cm(2), which is four-times lower than that of structures with additional insulator layers. Furthermore, single-mode laser operation can be sustained at temperatures up to 353 K. Our study represents a major step toward the practical realization of SPP nanolasers.

4.
Opt Express ; 24(16): 17541-52, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505725

RESUMO

Photoresist and electron beam lithography techniques were used to fabricate embedded Ag bowtie and diabolo nanostructures with various apex angles on the surface of a TiO2 film. The reinforced localized surface plasmon resonance (LSPR) and electric field generated at both the Ag/TiO2 and air/TiO2 interfaces enabled high light absorbance in the TiO2 nanostructure. Results for both the bowtie and diabolo nanostructures showed that a reduction in the apex angle enhances both LSPR and Raman intensity. The maximum electric current density observed at the apex indicates that the strongest SPR confines at the tip gap of the bowtie and corners of the diabolo. In a long-wavelength region, as the apex angle increases, the resonant peak wavelength of the standing wave matches the increased length of the prism edges of the bowtie and diabolo to create a redshift. In a short-wavelength region, as the apex angle increases, the blueshift of the resonant peak wavelength is presumably attributable to the increase in the effective index of the local surface plasmon polariton standing wave mainly residing along both the bowtie and diabolo axes. The redshift and blueshift trend in the simulation results for the resonant peak wavelength agrees well with the experimental results. The fastest photocatalytic rate was obtained by placing the Ag/TiO2 bowtie at an apex angle of 30° in the methylene blue solution, revealing that the plasmonic photocatalysis causes the highest degradation efficiency. This is because the Schottky junction and LSPR can stimulate many valid radicals for the environmental improvement.

5.
Opt Express ; 23(20): 25814-26, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480095

RESUMO

Acousto-optic (AO) coupling in a two-layer GaAs/Ag heterogeneous phoxonic crystal nanobeam cavity with plasmonic behavior is studied numerically. Because of the Ag metal layer, the cavity structure hybridizes photons and surface plasmons, squeezing the optical energy into small regions near the GaAs/Ag interface; the phononic cavity modes can be simultaneously tailored to highly match the photonic cavity modes at reduced regions in the cavity. Consequently, AO coupling is enhanced at near-infrared wavelengths. Boosting of the interface effect by the acoustic displacement field mainly contributes to the AO coupling enhancement. The simultaneous small photonic mode volume and high spatial matching of photonic and phononic cavity modes enhance the photonic resonance wavelength shift by one order of magnitude. This study enables applications of strong AO or photon-phonon interaction in subwavelength nano-structures.

6.
Opt Express ; 21(11): 13479-91, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736601

RESUMO

We theoretically analyze plasmonic gap-mode nanocavities covered by a thick cladding layer at telecommunication wavelengths. In the presence of high-index cladding materials such as semiconductors, the first-order hybrid gap mode becomes more promising for lasing than the fundamental one. Still, the significant mirror loss remains the main challenge to lasing. Using silver coatings within a decent thickness range at two end facets, we show that the reflectivity is substantially enhanced above 95 %. At a coating thickness of 50 nm and cavity length of 1.51 µm, the quality factor is about 150, and the threshold gain is lower than 1500 cm(-1).

7.
Opt Lett ; 38(20): 4050-3, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24321920

RESUMO

We generate photonic bandgaps (PBGs) in dielectric slab waveguides by exciting their acoustic plate eigenmodes of submicron wavelength. We investigate the optical forbidden bands below the light line where the slab interfaces and index of refraction are periodically modulated by the acoustic fields. Results show that multiple scattering through the enhanced periodic acousto-optic (AO) interaction opens Bragg PBGs. A tunable bandgap width and transmittance are achieved. Transmitted optical waves are found to incur strong nonlinear modulation through AO interaction by a multiphonon exchange mechanism. The applications include tunable optomechanical and AO devices.

8.
ACS Appl Mater Interfaces ; 14(26): 30299-30305, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675390

RESUMO

Recently, nanoscale light manipulation using surface plasmon polaritons (SPPs) has received considerable research attention. The conventional method of detecting SPPs is through light scattering or using bulky Si or Ge photodetectors. However, these bulky systems limit the application of nanophotonic circuits. In this study, the light-matter interaction between graphene and SPP was investigated. For realizing an improved integration in nanocircuits, single-layer graphene was added to asymmetric SPP nanoantenna arrays for nonscattering detection in the near field. The developed device is capable of detecting the controlled propagation of SPPs with a photoresponsivity of 15 mA/W, which paves the way for the new-generation on-chip optical communication.

9.
Materials (Basel) ; 14(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885569

RESUMO

Thin-film solar cells are currently an important research subject. In this study, a lattice-matched GaNAsP/Si tandem cell was designed. We adopted the drift-diffusion model to analyze the power conversion efficiency (PCE) of the solar cell. To find the maximum solar cell PCE, the recombination terms and the interlayer between subcells was omitted. For an optimal tandem cell PCE, this study analyzed the mole fraction combinations of GaNAsP and the thickness combinations between the GaNAsP and the Si subcells of the tandem cell. Our results showed the superiority of the tandem cell over the Si cell. The 4.5 µm tandem cell had a 12.5% PCE, the same as that of the 10.7 µm Si cell. The 11.5 µm tandem cell had 20.2% PCE, while the 11.5 µm Si cell processed 12.7% PCE. We also analyzed the Si subcell thickness ratio of sub-12 µm tandem cells for maximum PCE. The tandem cell with a thickness between 40% to 70% of a Si cell would have a max PCE. The ratio depended on the tandem cell thickness. We conclude that the lattice-matched GaNAsP/Si tandem cell has potential for ultrathin thin Si-based solar cell applications.

10.
Opt Express ; 18(14): 15039-53, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20639990

RESUMO

Semiconductor plasmonic Fabry-Perot lasers at submicron and nanometer scales exhibit many characteristics distinct from those of their conventional counterparts at micron scale. The differences originate from their small sizes and the presence of plasma metal in the cavity. To design a laser of this type, these features have to be taken into account properly. In this paper, we provide a comprehensive approach to the design and performance evaluation of the plasmonic Fabry-Perot nanolasers. In particular, we show the proper procedure to obtain the key parameters for lasing action, which are usually neglected in the conventional semiconductor Fabry-Perot lasers but become important for nanolasers.

11.
ACS Nano ; 14(5): 5678-5685, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32298575

RESUMO

Artificial color pixels based on dielectric Mie resonators are appealing for scientific research as well as practical design. Vivid colors are imperative for displays and imaging. Dielectric metasurface-based artificial pixels are promising candidates for developing flat, flexible, and/or wearable displays. Considering the application feasibility of artificial color pixels, wide color gamuts are crucial for contemporary display technology. To achieve a wide color gamut, ensuring the purity and efficiency of nanostructure resonance peaks in the visible spectrum is necessary for structural color design. Low-loss dielectric materials are suitable for achieving vivid colors with structural color pixels. However, high-order Mie resonances prevent color pixels based on dielectric metasurfaces from efficiently generating highly saturated colors. In particular, fundamental Mie resonances (electric/magnetic dipole) for red can result in not only a strong resonance peak at 650 nm but also high-order Mie resonances at shorter wavelengths, which reduces the saturation of the target color. To address these problems, we fabricated silicon nitride metasurfaces on quartz substrates and applied Rayleigh anomalies at relatively short wavelengths to successfully suppress high-order Mie resonances, thus creating vivid color pixels. We performed numerical design, semianalytic considerations, and experimental proof-of-concept examinations to demonstrate the performance of the silicon nitride metasurfaces. Apart from traditional metasurface designs that involve transmission and reflection modes, we determined that lateral light incidence on silicon nitride metasurfaces can provide vivid colors through long-range dipole interactions; this can thus extend the applications of such surfaces to eyewear displays and guided-wave illumination techniques.

12.
Nanoscale Res Lett ; 15(1): 66, 2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32227260

RESUMO

We systematically studied the characteristics of hybrid perovskite-based surface plasmon nanolasers. If one changes the anion composition of perovskites, the emission wavelength can be easily tuned. We conducted in full-spectrum modeling that featured hybrid perovskite nanowires placed on different SiO2-coated metallic (Au, Ag, and Al) plates. The proposed nanocavities that supported plasmonic gap modes exhibited distinguished properties of nanolasers, such as low-transparency threshold-gain and low lasing threshold. The corresponding experimental results for the MAPbBr3 nanolaser on Ag revealed the low-threshold operation. These superior features were attributed to enhanced light-matter interaction with strong coupling. Therefore, the proposed scheme, integrated with hybrid perovskite as gain material, provides an excellent platform for nanoscale plasmon lasing in the visible to near-infrared spectra.

13.
Adv Sci (Weinh) ; 7(24): 2001823, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344123

RESUMO

A hybrid graphene-insulator-metal (GIM) platform is proposed with a supported surface plasmon polariton (SPP) wave that can be manipulated by breaking Lorentz reciprocity. The ZnO SPP nanowire lasers on the GIM platforms are demonstrated up to room temperature to be actively modulated by applying external current to graphene, which transforms the cavity mode from the standing to propagation wave pattern. With applying 100 mA external current, the laser threshold increases by ≈100% and a 1.2 nm Doppler shift is observed due to the nonreciprocal propagation characteristic. The nanolaser performance also depends on the orientation of the nanowire with respect to the current flow direction. The GIM platform can be a promising platform for integrated plasmonic system functioning laser generation, modulation, and detection.

14.
Sci Rep ; 7: 39813, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045127

RESUMO

We systematically investigate the effects of surface roughness on the characteristics of ultraviolet zinc oxide plasmonic nanolasers fabricated on aluminium films with two different degrees of surface roughness. We demonstrate that the effective dielectric functions of aluminium interfaces with distinct roughness can be analysed from reflectivity measurements. By considering the scattering losses, including Rayleigh scattering, electron scattering, and grain boundary scattering, we adopt the modified Drude-Lorentz model to describe the scattering effect caused by surface roughness and obtain the effective dielectric functions of different Al samples. The sample with higher surface roughness induces more electron scattering and light scattering for SPP modes, leading to a higher threshold gain for the plasmonic nanolaser. By considering the pumping efficiency, our theoretical analysis shows that diminishing the detrimental optical losses caused by the roughness of the metallic interface could effectively lower (~33.1%) the pumping threshold of the plasmonic nanolasers, which is consistent with the experimental results.

15.
Sci Rep ; 6: 19887, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26814581

RESUMO

Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications.

16.
Sci Rep ; 5: 13782, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26346448

RESUMO

We propose dynamic modulation of a hybrid plasmonic-photonic crystal nanocavity using monochromatic coherent acoustic phonons formed by ultrahigh-frequency surface acoustic waves (SAWs) to achieve strong optomechanical interaction. The crystal nanocavity used in this study consisted of a defective photonic crystal beam coupled to a metal surface with a nanoscale air gap in between and provided hybridization of a highly confined plasmonic-photonic mode with a high quality factor and deep subwavelength mode volume. Efficient photon-phonon interaction occurs in the air gap through the SAW perturbation of the metal surface, strongly coupling the optical and acoustic frequencies. As a result, a large modulation bandwidth and optical resonance wavelength shift for the crystal nanocavity are demonstrated at telecommunication wavelengths. The proposed SAW-based modulation within the hybrid plasmonic-photonic crystal nanocavities beyond the diffraction limit provides opportunities for various applications in enhanced sound-light interaction and fast coherent acoustic control of optomechanical devices.

17.
ACS Nano ; 9(4): 3978-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853853

RESUMO

Nanolasers with an ultracompact footprint can provide high-intensity coherent light, which can be potentially applied to high-capacity signal processing, biosensing, and subwavelength imaging. Among various nanolasers, those with cavities surrounded by metals have been shown to have superior light emission properties because of the surface plasmon effect that provides enhanced field confinement capability and enables exotic light-matter interaction. In this study, we demonstrated a robust ultraviolet ZnO nanolaser that can operate at room temperature by using silver to dramatically shrink the mode volume. The nanolaser shows several distinct features including an extremely small mode volume, a large Purcell factor, and a slow group velocity, which ensures strong interaction with the exciton in the nanowire.


Assuntos
Lasers , Nanotecnologia/métodos , Óxido de Zinco , Temperatura
18.
Nanoscale Res Lett ; 9(1): 641, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520591

RESUMO

We theoretically analyze nanowire-based hybrid plasmonic nanocavities on thin substrates at visible wavelengths. In the presence of thin suspended substrates, the hybrid plasmonic modes, formed by the coupling between a metal nanowire and a dielectric nanowire with optical gain, exhibit negligible substrate-mediated characteristics and overlap better with the gain region. Consequently, the confinement factor of the guided hybrid modes is enhanced by more than 42%. However, the presence of significant mirror loss remains the main challenge to lasing. By adding silver coatings with a sufficient thickness range on the two end facets, we show that the reflectivity is substantially enhanced to above 50%. For a coating thickness of 50 nm and cavity length of about 4 µm, the quality factor is above 100.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa