Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 171: 107740, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634483

RESUMO

Ambient fine particulate matter (PM2.5) pollution is a major environmental and public health challenge in China. In the recent decade, the PM2.5 level has decreased mainly driven by reductions in particulate sulfate as a result of large-scale desulfurization efforts in coal-fired power plants and industrial facilities. Emerging evidence also points to the differential toxicity of particulate sulfate affecting human health. However, estimating the long-term spatiotemporal trend of sulfate is difficult because a ground monitoring network of PM2.5 constituents has not been established in China. Spaceborne sensors such as the Multi-angle Imaging SpectroRadiometer (MISR) instrument can provide complementary information on aerosol size and type. With the help of state-of-the-art machine learning techniques, we developed a sulfate prediction model under support from available ground measurements, MISR-retrieved aerosol microphysical properties, and atmospheric reanalysis data at a spatial resolution of 0.1°. Our sulfate model performed well with an out-of-bag cross-validationR2 of 0.68 at the daily level and 0.93 at the monthly level. We found that the national mean population-weighted sulfate concentration was relatively stable before the Air Pollution Prevention and Control Action Plan was enforced in 2013, ranging from 10.4 to 11.5 µg m-3. But the sulfate level dramatically decreased to 7.7 µg m-3 in 2018, with a change rate of -28.7 % from 2013 to 2018. Correspondingly, the annual mean total non-accidental and cardiopulmonary deaths attributed to sulfate decreased by 40.7 % and 42.3 %, respectively. The long-term, full-coverage sulfate level estimates will support future studies on evaluating air quality policies and understanding the adverse health effect of particulate sulfate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Poluição do Ar/análise , Poeira/análise , China , Aerossóis/efeitos adversos , Aerossóis/análise
2.
Environ Res Lett ; 18(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39036363

RESUMO

Previous studies have reported that atmospheric elemental carbon (EC) may pose potentially elevated toxicity when compared to total ambient fine particulate matter (PM2.5). However, most research on EC has been conducted in the US and Europe, whereas China experiences significantly higher EC pollution levels. Investigating the health impact of EC exposure in China presents considerable challenges due to the absence of a monitoring network to document long-term EC levels. Despite extensive studies on total PM2.5 in China over the past decade and a significant decrease in its concentration, changes in EC levels and the associated mortality burden remain largely unknown. In our study, we employed a combination of satellite remote sensing, available ground observations, machine learning techniques, and atmospheric big data to predict ground EC concentrations across China for the period 2005-2018, achieving a spatial resolution of 10 km. Our findings reveal that the national average annual mean EC concentration has remained relatively stable since 2005, even as total PM2.5 levels have substantially decreased. Furthermore, we calculated the all-cause non-accidental deaths attributed to long-term EC exposure in China using baseline mortality data and pooled mortality risk from a cohort study. This analysis unveiled significant regional disparities in the mortality burden resulting from long-term EC exposure in China. These variations can be attributed to varying levels of effectiveness in EC regulations across different regions. Specifically, our study highlights that these regulations have been effective in mitigating EC-related health risks in first-tier cities. However, in regions characterized by a high concentration of coal-power plants and industrial facilities, additional efforts are necessary to control emissions. This observation underscores the importance of tailoring environmental policies and interventions to address the specific challenges posed by varying emission sources and regional contexts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa